共查询到19条相似文献,搜索用时 109 毫秒
1.
活性炭的孔隙结构与吸附性能 总被引:2,自引:0,他引:2
本文根据吸附势理论和微孔容积充填理论的最新成就,概述了活性炭吸附性能与孔隙结构之间的定量关系。通常只需根据一条完整的苯蒸气的实验吸附等温线,便可求得活性炭的微孔结构特性参数W_o~o、xo和δ,以及中孔的表面积Sme。已知这些参数,便可推算该活性炭对各种气体和蒸气在宽温度和比压范围的吸附平衡值,并可计算出微孔容积按其尺寸的分布曲线。 相似文献
2.
在惰性气氛下对以石油焦为原料,以KOH为活化剂制得的超级活性炭进行了二次炭化处理,并考察了处理前后超级活性炭的孔结构变化及不同压力下该活性炭对甲烷的吸附行为。结果发现:活性炭经1200℃下二次炭化处理后其BET比表面积及孔容有所下降,孔径分布变窄;其对甲烷孤质量吸附量下降,对甲烷的体积吸附量在较低压力下(<3MPa)稍有增加,而在较高压力下(>3MPa)时明显减少。 相似文献
3.
温度对煤和炭吸附甲烷的影响 总被引:9,自引:1,他引:9
用容量法测定了不同温度下甲烷在无烟煤及其炭化亲上的吸附特性。结果表明甲烷在无烟及其炭化样上吸附平衡时间分别由50℃时的5h和3h增加到-21℃时的25h和16h,吸附热分别为15KJ/mol和12KJ/mol。 相似文献
4.
5.
煤的原子分子结构及吸附甲烷机理研究进展 总被引:3,自引:1,他引:3
总结了煤的原子径向分布与微晶结构、稠环芳烃的电子光谱规律与煤的颜色间的关系、煤与CH4分子的相互作用、无烟煤及其炭化样吸附/解吸甲烷的热力学和动力学过程等内容的研究与发展,结果表明:(1)低阶煤的微晶参数d002,Ic和Ia随含碳量呈阶段性变化,其微晶结构特征与纤维素的结构有关,并可用煤化度p定量描述煤化过程中煤的微晶结构变化。(2)煤中存在13个苯环以上稠环芳香结构单元,(3)甲烷分子与煤表面的相互作用各向异性,最大作用势(吸附势)为2.65kJ/mol,旋转势垒为1.34kJ/mol,预计吸附振动光谱的跃迁基频为53cm^-1。(4)煤对甲烷的饱和吸附量几乎不随温度变化,炭化样与活性炭的饱和吸附量则随温度的降低而线性增大;从煤制备的炭化样,以及活性炭的吸附热都接近甲烷液化热,而煤的吸附热则高出近一倍。(5)煤层(粒)吸附解吸甲烷的动力学过程可用通用的一级组合模型和实用的吸附(解吸)扩散控制模型来描述,其三常数动力学公式中的初始吸附(解吸)率Q0/Qmax可作为煤与瓦斯突出预测指标。(6)甲烷在无烟煤中的扩散系统为~10^-10cm^2/s,扩散活化能为14.3kJ/mol;甲烷在煤中的扩散实为通过微孔的流动。 相似文献
6.
煤的孔隙结构与反应性关系的研究进展 总被引:6,自引:1,他引:6
煤在气化、燃烧与活性炭制备等热化学转化过程中,均存在着孔隙结构与表面积的变化.煤的孔隙结构变化特征的研究是煤炭高效合理利用的基础.从煤的孔隙结构的表征、反应过程中孔隙结构变化以及孔隙结构模型三方面总结了煤的孔隙结构与反应性关系领域的研究现状,并对今后的研究重点进行了展望,即加强孔隙结构与反应性关系通用规律和催化剂对孔隙结构影响两方面的研究. 相似文献
7.
活性炭含水量对甲烷吸附量的影响 总被引:1,自引:0,他引:1
本文利用容积法测试了活性炭AX-21在不同含水量下对甲烷吸附量的影响。实验条件为温度298.15K、压力0-8MPa。分析了活性炭的不同含水量对甲烷吸附量的影响。以及干燥时间与AX-21含水量的变化关系,并对在吸附剂微孔中甲烷和水形成水合物的问题进行了探讨。 相似文献
8.
9.
10.
11.
This study explains the single-component and binary mixture adsorption studies on two different coals from the Zonguldak Basin (Northwestern Turkey). Assessment of energetic heterogeneity of coal surface and its effect on the equilibrium binary gas adsorption are discussed. Single component adsorption tests were performed using methane and carbon dioxide at 30°C. Binary mixtures prepared with 10, 15 and 20% carbon dioxide were also tested at the same temperature. Various single-component adsorption isotherms were fitted to the experimental data of single gases. The data obtained from these models were interpreted to determine the energetic heterogeneity of the coals towards adsorption of methane and carbon dioxide. Ideal adsorbed solution (IAS) theory was used to predict the data and discrepancies between experimental data, and the model predictions were interpreted. Results showed that coals exhibit a heterogeneous behavior in gas adsorption. This heterogeneity can be different for each coal–gas pair and the extent of the heterogeneity makes the binary gas predictions differ from the experimental data. The deviations between IAS and experimental data increase as the amount of gas, to which the coal shows high heterogeneity, increases in the mixture. 相似文献
12.
The low-temperature oxidation of five coals, ranging in rank from subbituminous to anthracite, was studied in the temperature range 30–250 °C, and the reaction kinetics were elucidated. The reaction rates were independent of particle diameter <1 mm. The orders of reaction for CO2 and CO formation were 0.50 and 0.54, respectively, with respect to oxygen. Activation energies of 51.5–59.4 kJ mol?1 were obtained for the CO2 and CO formation reactions. The rates of formation of CO2 and CO were correlated to the internal surface area and the oxygen contents of the coals. It was found that pores having radii >100 Å, and the oxygen-containing groups which decompose to CO2 and/or CO, were playing important roles in low-temperature oxidation of coals. 相似文献
13.
我国是一个多煤少气贫油的国家,煤层气储量约30万亿立方米,由于缺乏先进实用的低浓度煤层气甲烷分离浓缩技术,当前抽采煤层气利用率仅为50%左右。因此,对低浓度煤层气甲烷富集浓缩过程开展研究,可在开发能源的同时减少温室气体的排放,具有重大的应用价值和战略意义。简要介绍了我国煤层气资源开发利用情况,综述了近年来低浓度煤层气吸附浓缩技术研究进展,包括新型吸附材料及先进吸附工艺。对于低浓度煤层气中CH4/N2分离,目前文献报道吸附材料的吸附容量及分离系数仍然处于较低水平;受吸附材料的分离性能较差影响,传统变压吸附工艺对低浓度煤层气中CH4浓缩效果并不理想。最后指出,高吸附容量、高选择性吸附材料及多种方法结合的新型吸附工艺是未来低浓度煤层气吸附浓缩技术的发展方向。 相似文献
14.
Zahra Gorgin Karaji Reza Bagheri Soodeh Amirkhani 《International Journal of Applied Ceramic Technology》2022,19(5):2713-2722
Three-dimensional biocompatible porous structures can be fabricated using different methods. However, the biological and mechanical behaviors of scaffolds are the center of focus in bone tissue engineering. In this study, tricalcium phosphate scaffolds with similar porosity contents but different pore morphologies were fabricated using two different techniques, namely, the replica method and the pore-forming agent method. The samples fabricated using the pore-forming agent showed more than two times higher compressive and bending strengths and more than three times higher compressive moduli. Furthermore, a thin layer of agarose coating improved the compressive and bending strength of both types of ceramic scaffolds. Subsequently, the samples’ capability to guide biomineralization was evaluated by immersion into a simulated body fluid that developed Ca-P nano-platelets formation and enhanced the compressive strength. Finally, the tetrazolium-based colorimetric (MTT) assay was used to evaluate L929 cell viability and proliferation on all the samples and confirmed that cell behavior was not affected by pore morphology or agarose coating. In summary, samples produced by the use of the pore-forming agent showed higher potential to be applied as bone scaffolds in tissue engineering applications. 相似文献
15.
对煤的芳香单元延展度、芳香单元堆砌层数以及包括不同缺陷和含氧官能团类型的表面结构对煤层气吸附与扩散的影响进行了研究。采用Monte Carlo模拟方法及分子动力学模拟方法分别得到了煤层气的吸附量与扩散系数,模拟温度为303 K,压力为10 MPa。研究结果表明,单位质量的煤对甲烷的吸附量随着芳香单元堆砌层数的增加而降低,缺陷和含氧官能团的存在不利于甲烷的吸附。甲烷的扩散随着芳香单元延展度的增加呈现出一个N形的复杂变化过程,单缺陷和羰基的存在有利于煤层气的扩散,煤结构中大的裂隙更有利于煤层气的扩散。最后,基于煤层气的微观影响因素和宏观运移行为提出了煤颗粒径向不均质的煤层气扩散微观模型。 相似文献
16.
Vitrinite in coal is considered as a macromolecular system exhibiting intermolecular microporosity. The surface of this microporosity reflects the structures of the macromolecular system. Adsorption of nitrogen and carbon dioxide provide micropore volumes; adsorption of water and ammonia respond to surface polarity; adsorption of iodine responds to electron availability to form charge transfer complexes. Iodine was adsorbed, both from the vapour phase and aqueous KI solution, by a rank range of coals, fresh, oxidized and pyrolysed. Extents of iodine adsorption were greater from aqueous solution and increased with increasing coal rank to about 87wt% C and then decreased. Extents decreased with increasing severity of oxidation from both vapour and aqueous phases; extents of iodine adsorption increased with increasing heat treatment temperature of coal pyrolysis to decrease subsequently on charring and coking. Results are interpreted in terms of aromaticity of coals, the extent of cross-linkage, and mechanisms of oxidation and pyrolysis. 相似文献
17.
Experimental studies of methane diffusion from coal cuttings have been analysed with both a unipore diffusion model and a bi-disperse pore structure diffusion model to determine the time range of each model's validity. Initial desorption, during the first 50% of volume desorbed, can be adequately described by the unipore model. For Fruitland coals of the San Juan Basin, the unipore diffusion coefficient varied by less than a factor of 2 from a value of 1 × 10?5s?1 despite large variations in sample depth and location. The unipore diffusion model has been successfully incorporated into a lost-gas-correction-factor determination as part of a new technique to delineate coal-bed methane. To describe methane diffusion over the full timescale of desorption, a more complex model which more accurately represents the observed bi-disperse pore structure of coal is required. Using that model the observed desorption rate is described over all the desorption. This model is especially applicable as a source term in describing overall well production. 相似文献
18.
M. Contreras G. Lagos N. Escalona G. Soto‐Garrido L.R. Radovic R. Garcia 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2009,84(11):1736-1741
BACKGROUND: There exists now a widely held view that the methane storage capacity on an activated carbon is not related to any of the routinely determined properties of the adsorbent, such as surface area or micropore volume. This has been confirmed and a correlation pursued with other physical and/or chemical properties of both commercially available carbons and those prepared in the laboratory. Textural characteristics (from nitrogen adsorption isotherms at 77 K) considered were BET‐equivalent specific surface area, DR micropore volume and Horvath–Kawazoe micropore size distribution. Chemical properties were evaluated using Fourier transform infrared (FTIR) spectroscopy, thermal programmed decomposition (TPD) and Boehm titrations. Both kinetic and equilibrium methane adsorption experiments were performed at 273 and 298 K and up to 3.5 MPa. RESULTS: Using phosphoric acid to activate peach stones together with additional thermal treatment enabled the production of activated carbons with 137 v/v methane adsorption capacity at 298 K. CONCLUSIONS: The presence of acidic surface functional groups has a detrimental influence on methane uptake, due to the chemical inertness of the adsorbate and/or to pore blockage of the adsorbent. Basic surface functional groups (pyrone), together with a desirable pore size distribution centered at ca 0.8 nm, are thought to be responsible for improved methane adsorption capacity on such activated carbons. Copyright © 2009 Society of Chemical Industry 相似文献