首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preparation and characterization of superabsorbent hydrogels obtained by radiation induced crosslinking of polyacrylamide (PAAm), poly(acrylic acid) (PAAc), poly(vinyl alcohol) (PVA), and potassium polyacrylate (PAAcK) were investigated individually and in (PAAm)–binary systems for possible uses in agricultural fields. The swelling of the investigated hydrogels was mainly related to the type of their hydrophilic functional groups and/or the presence of polarized charges. The preparation conditions, such as irradiation dose and hydrogel blend compositions, that influence the water absorbency of PAAm/PAAcK copolymers and alter their gel content and crosslinking density were investigated. The higher the irradiation dose, the higher the gel content, and the lower the water absorbency. PAAm/PAAcK copolymer, possessing pore structure and fast swelling, was prepared by mixing the hydrogel components with a gas‐forming agent, namely, ammonium carbonate. Studies were also made on the applications of such hydrogels to improve the physical and water retention properties of sandy soil for agricultural purposes. The effect of different types and amounts of hydrogels added to sandy soil on the emergence, vegetative growth, and wilting time of corn (Zea mays) plants was investigated. As the hydrogel level increased, the average of plant height, leaf width, total dry weight, corncob production, and time to wilt increased. The obtained results suggested that the PAAm/PAAcK hydrogels can improve sandy soil properties for cultivation, because they often absorb and keep water one thousand times more than their own weight, reduce watering frequency of the plants, and enhance water retention of soil matrix that results in an increase in plant growth and performance. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1360–1371, 2004  相似文献   

2.
To improve equilibrium water content, dehydrothermally crosslinked poly(vinyl alcohol) (PVA) hydrogel was grafted with N‐vinyl pyrrolidone (NVP) or acrylic acid (AA) monomer using γ‐radiation. Swelling behavior of the grafted hydrogels was studied in phosphate‐buffered saline, and cell viability was evaluated using fibroblast cells from mouse connective tissue. Equilibrium water content of AA‐ and NVP‐grafted PVA hydrogel ranged between 40–60% and 60–80%, respectively, depending on radiation dose and monomer concentration. For maximum degree of swelling, the optimum monomer concentration and radiation dose were 20% by weight and 20 kGy, respectively. Fibroblast cells seeded on NVP‐grafted hydrogel had an extended oval morphology while those seeded on AA‐grafted PVA had a rounded spherical morphology. These results support the use of NVP for grafting PVA to increase swelling and improve cell viability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2862–2868, 2004  相似文献   

3.
A series of amphoteric, superabsorbent polymers [poly(acrylic acid‐co‐diallyldimethylammonium chloride)] with different molar ratios of anionic groups to cationic groups were prepared by solution polymerization to investigate their swelling behaviors and the controlled release of agrochemicals. Various factors, including the solution pH, the concentrations of different salt solutions, and the temperature, were studied. The dynamic parameters of hydrogels at different temperatures suggested that diffusion was Fickian at lower temperatures, whereas non‐Fickian diffusion prevailed at higher temperatures. A copolymer hydrogel with a low anionic‐group/cationic‐group ratio showed a higher swelling capacity in water and higher salt tolerance. Also, the anionic‐group/cationic‐group ratio was not the dominant factor in determining the water retention. A poly(acrylic acid‐co‐diallyldimethylammonium chloride) hydrogel could control the release of agrochemicals effectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 986–991, 2006  相似文献   

4.
pH‐sensitive anionic hydrogels composed of poly(vinyl alcohol) (PVA) and poly(γ‐glutamic acid) (γ‐PGA) were prepared by the freeze drying method and thermally crosslinked to suppress hydrogel deformation in water. The physical properties, swelling, and drug‐diffusion behaviors were characterized for the hydrogels. In the equilibrium swelling study, PVA/γ‐PGA hydrogels shrunk in pH regions below the pKa (2.27) of γ‐PGA, whereas they swelled above the pKa. In the drug‐diffusion study, the drug permeation rates of the PVA/γ‐PGA hydrogels were directly proportional to their swelling behaviors. The cytocompatibility test showed no cytotoxicity of the PVA/γ‐PGA hydrogels for the 3T3 fibroblast cell lines. The results of these studies suggest that hydrogels prepared from PVA and γ‐PGA could be used as orally administrable drug‐delivery systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   

6.
Based on gelatin (Gltn) and acrylic acid (AAc), biodegradable pH‐sensitive hydrogel was prepared using gamma radiation as super clean source for polymerization and crosslinking. Incorporation of PAAc in the prepared hydrogel was confirmed by Fourier transform infrared spectroscopy (FTIR). The effect of PAAc content on the morphological structure of the prepared hydrogel swollen at pH 1, 5, and 7 was examined using scanning electron microscopy (SEM). The results showed the dependence of the porous structure of the prepared hydrogels on AAc content and the pH of the swelling medium. Swelling properties of gelatin/acrylic acid copolymer hydrogels with different AAc contents were investigated at different pH values. Swelling data showed that the prepared hydrogels possessed pronounced pH sensitivity. In vitro release studies were performed to evaluate the hydrogel potential as drug carrier using ketoprofen as a model drug. Experimental data showed that the release profile depends on both hydrogel composition and pH of the releasing medium. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Semi‐interpenetrating polymer network hydrogels with different compositions of chitosan (Cs), acrylic acid, and citraconic acid were synthesized via free‐radical polymerization with ethylene glycol dimethacrylate as a crosslinker. The variations of the swelling percentages of the hydrogels with time, temperature, and pH were determined, and Cs–poly(acrylic acid) (PAA) hydrogels were found to be most swollen at pH 7.4 and 37°C. Scanning electron micrographs of Cs–PAA and Cs–P(AA‐co‐CA)‐1 (Cs‐poly(acrylicacid‐co‐citraconir acid)?1) were taken to observe the morphological differences in the hydrogels. Although the less swollen hydrogel, Cs–P(AA‐co‐CA)‐1, had a sponge‐type structure, the most swollen hydrogel, Cs–PAA, displayed a uniform porous appearance. Fluconazole was entrapped in Cs–P(AA‐co‐CA)‐1 and Cs–PAA hydrogels, and the release was investigated at pH 4.0 and 37°C. The kinetic release parameters of the hydrogels (the gel characteristic constant and the swelling exponent) were calculated, and non‐Fickian diffusion was established for Cs–PAA, which released fluconazole much more slowly than the Cs–P(AA‐co‐CA)‐1 hydrogel. A therapeutic range was reached at close to 1 h for both hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
A novel biopolymer‐based superabsorbent hydrogel was synthesized through chemical crosslinking by graft copolymerization of partially neutralized acrylic acid onto the hydrolyzed collagen, in the presence of a crosslinking agent and a free radical initiator. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis reaction based on the swelling capacity of the hydrogels. This method was applied for the experiments and standard L16 orthogonal array with three factors and four levels were chosen. The critical parameters that have been selected for this study are crosslinker (N,N′‐methylene bisacrylamide), initiator (potassium persulfate), and monomer (acrylic acid) concentration. From the analysis of variance of the test results, the most effective factor to control equilibrium swelling capacity was obtained and maximum water absorbency of the optimized final product was found to be 500 g/g. The surface morphology of the gel was examined using scanning electron microscopy. Furthermore, the sorption capacity of the hydrogel toward bivalent metal ions was evaluated. Therefore, the hydrogel may be considered as a candidate to develop as an efficient biopolymer‐based chelating hydrogel for water treatment. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4878–4885, 2006  相似文献   

9.
This work has been concerned with the synthesis of the hydrogels of poly (vinyl pyrrolidone) (NVP), poly (hydroxy ethylmethacrylate) (HEMA), and their copolymer under the effect of gamma radiation in the presence of N,N‐methylenebisacryl‐amide (MBAm) as a crosslinking agent. The effect of the different factors that may affect the gelation and yield product, such as solvent composition and irradiation dose, was investigated. The formed hydrogels were characterized in terms of swelling in water and different organic solvents, X‐ray diffraction (XRD), and IR spectroscopic analysis. The sorption capability of these hydrogels towards some commercial basic and acid dyesstuffs was also studied. The results showed that a solvent mixture composed of equal contents of water and methanol is the most suitable to afford the minimum sol fraction and the highest yield product at a minimal irradiation dose of 10 kGy. It was observed that NVP hydrogel displayed the highest swelling in water, alcohols, and dimethyformamide of ~1300% and a lower tendency to swell in nonpolar solvents. The results showed that HEMA hydrogel has a high affinity to absorb basic dyes while NVP has a tendency for acid dyes. Also, the sorption of either the basic or acid dyes by the different hydrogels was found to greatly depend on the concentration of dye in solution and the mass of the used hydrogel. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3274–3280, 2004  相似文献   

10.
A new method was used for the production of fast‐responding bulk hydrogels with microstructure (BHMs) with a high swelling ratio. These BHMs were synthesized first by the formation of poly(N‐isopropylacrylamide‐co‐acrylic acid) (NIPAAm–AA) microgel particles and then by the crosslinking of the particles with N‐isopropylacrylamide monomer. The polymer obtained had the desired microstructure but was bulk (monolithic), so it could be used in a variety of applications. The NIPAAm–AA microgel particles were characterized with transmission electron microscopy, and the formed BHMs were characterized with scanning electron microscopy. Compared with conventional bulk hydrogels, the BHMs had very high swelling ratios and much faster swelling rates attributable to the collaboration of the ionized microgel particles and bulk hydrogels. An increase in the microgel particles embedded in the BHMs provided faster hydrogel swelling. The number of ionic acrylic acid groups in the hydrogels affected their swelling behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 169–178, 2002  相似文献   

11.
In this study, a series of poly(acrylamide‐co‐acrylic acid‐co‐2‐hydroxy ethyl actylate) [AM‐co‐AA‐co‐HEA] hydrogels have been synthesized by varying the acrylic acid (AA)content over eightfold in feed in the range of 33.34–93.76% by keeping other monomer constant. These hydrogels were characterized by FTIR, SEM analysis, elemental analysis, residual acrylic acid analysis, network parameters, and dynamic swelling behavior. The swelling study showed that equilibrium swelling ratio was nonlinearly increased with increasing AA content. Interestingly, the equilibrium swelling ratio decreased from 53.42 to 48.52 for 75–80% AA content hydrogel. The swelling data were found to satisfactorily fit Fick's second law, demonstrating that diffusion rate of water uptake was primarily Fickian. From model fitting, it was observed that early model was applicable for first 30% water absorption, and late model was applicable for latter 70% water absorption for increasing AA content from 33.34–90.90%. For 93.76% AA, early‐time model was extended up to first 50% of water absorption and late model was contracted for latter 50% water absorption, indicating that excessive AA content affects the applicability range of early‐time and late‐time diffusion models for water absorption. Etters model was best applicable to all type of hydrogels and followed over all swelling range. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
The preparation of thermo‐induced hydrogel fibers composed of poly(vinyl alcohol) and poly(acrylic acid) is presented. The hydrogel fiber was prepared by extruding the spinning dope from in situ polymerization of acrylic acid in the presence of PVA into a coagulating bath of saturated ammonium sulfate aqueous solution. The network was formed by thermally heating the dried fibers under vacuum. The final hydrogel fibers exhibit pH‐sensitive behavior and show a hysteresis loop in the pH range from 3.0 to 12.0. The pH value, at which the swelling elongation ratio of the fiber had a jump, shifted to a lower value with increasing PAA content within the network. Increasing the heating temperature and time for the fibers, decreased the swelling elongation ratio, and the jump point pH shifted to higher pH value. The oscillatory swelling/contracting behavior of the hydrogel fiber exhibited a good reversible pH‐responsive property. Transmission Electron Microscopy (TEM) showed that PVA and PAA have good compatibility and give a relative independent interpenetrating network. Scanning Electron Microscopy (SEM) showed that in the surface of the fibers there were microholes and ditches due to some diffusion of PAA into the coagulating solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2423–2430, 2002  相似文献   

13.
Polyelectrolyte hydrogels were synthesized from N,N‐dimethylacrylamide, acrylamide, and itaconic acid with ammonium persulfate as a free‐radical initiator in the presence of methylene(bis)acrylamide as a crosslinker. The swelling behavior of the ionic poly(N,N‐dimethylacrylamide‐co‐acrylamide) hydrogels was investigated in pure water, in KSCN solutions with pHs 4 and 9, and in water–acetone mixtures according to the itaconic acid content in the hydrogel. The pulsatile swelling behavior of these hydrogels was studied both in water–acetone and in pH 2–9 buffer solutions. Although the equilibrium swelling ratio of the hydrogels with low concentrations of itaconic acid was almost not affected by changes in the temperature, the equilibrium swelling ratio of the hydrogels with high concentrations of itaconic acid increased in the temperature range of 20–50°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2140–2145, 2007  相似文献   

14.
Copolymers composed of poly(vinyl alcohol) (PVA) and poly(dimethylsiloxane) (PDMS) were crosslinked with chitosan to prepare semi‐interpenetrating polymer network (IPN) hydrogels by an ultraviolet (UV) irradiation method for application as potential biomedical materials. PVA/PDMS copolymer and chitosan was cast to prepare hydrogel films, followed by a subsequent crosslinking with 2,2‐dimethoxy‐2‐phenylacetophenone as a nontoxic photoinitiator by UV irradiation. Various semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from different weight ratios of chitosan and the copolymer of PVA/PDMS. Photocrosslinked hydrogels exhibited an equilibrium water content (EWC) in the range of 65–95%. Swelling behaviors of these hydrogels were studied by immersion of the gels in various buffer solutions. Particularly, the PCN13 as the highest chitosan weight ratio in semi‐IPN hydrogels showed the highest EWC in time‐dependent and pH‐dependent swelling. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2591–2596, 2002  相似文献   

15.
The swelling behavior of novel pH- and temperature-sensitive interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAAc) in water was investigated. The PVA/PAAc IPN hydrogels were synthesized by UV irradiation, followed by a repetitive freezing and thawing process by which PVA hydrogel networks were formed inside of cross-linked PAAc chains. The swelling behaviors of these IPNs were analyzed in buffer solution at various pH and temperature ranges. Swelling ratios of all IPNs were relatively high, and they showed reasonable sensitivity to both pH and temperature. Hydrogels showed both the positive and negative swelling behaviors depending on PAAc content. IPN46 showed the positive temperature-sensitive swelling behaviors and its stepwise changes in swelling ratio was about 1.8 and 2.0 obtained between 25 and 45°C at pH 7, and between pH 4 and 7 at 35°C, respectively. The positive temperature dependence is attributed to the formation and dissociation of hydrogen bonding complexes between PVA and PAAc. These IPNs are expected to show a pH- and temperature-sensitive drug release according to the stepwise behavior at this temperature region. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Amphiphilic semi‐interpenetrating polymer networks (semi‐IPN) hydrogels were prepared by a sequential‐IPN method by acrylic acid graft copolymerization into cationic starch in mild aqueous media of poly(dimethyldiallylammonium chloride). Some main factors were investigated to evaluate the swelling of hydrogels, and the network parameters Mc were given accordingly to elaborate the interaction between polymers. The chemical structure of the resulting hydrogel was confirmed using Fourier transform infrared spectroscopy. The cationic starch‐based semi‐IPN hydrogels achieved a high swelling capacity of 1070 g/g in deionized water and 94 g/g in 0.9 wt % NaCl solution, respectively) and high compressive stress in a high water content. Besides, a different pH‐dependent behavior was found for this semi‐IPN hydrogel. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Poly(vinyl alcohol)/poly(N‐vinyl pyrrolidone) (PVP)/chitosan hydrogels were prepared by a low‐temperature treatment and subsequent 60Co γ‐ray irradiation and then were medicated with ciprofloxacin lactate (an antibiotic) and chitosan oligomer (molecular weight = 3000 g/mol). The gel content, swelling ratio, tensile strength, and crystallinity of the hydrogels were determined. The effects of the chitosan molecular weight, the low‐temperature treatment procedure, and the radiation dosage on the hydrogel properties were examined. The molecular weight of chitosan was lowered by the irradiation, but its basic polysaccharide structure was not destroyed. Repeating the low‐temperature treatment and γ‐ray irradiation caused effective physical crosslinking and chemical crosslinking, respectively, and contributed to the mechanical strength of the final hydrogels. The incorporation of PVP and chitosan resulted in a significant improvement in the equilibrium swelling ratio and elongation ratio of the prepared hydrogels. The ciprofloxacin lactate and chitosan oligomer were soaked into the hydrogels. Their in vitro release behaviors were examined, and they were found to follow diffusion‐controlled kinetics. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2453–2463, 2006  相似文献   

18.
Hydrogels with semi‐interpenetrating networks composed of poly(acrylic acid) (PAAc) and poly(aspartic acid) (PASP) have great potential for pharmaceutical and biomedical applications. In this study, we aimed to synthesize semi‐interpenetrating PAAc/PASP hydrogels with improved swelling–deswelling properties via two‐step polymerization, in which the first step of polymerization was performed at 37 °C for 15 min and the second step, the freezing polymerization, was performed at ?20 °C for 24 h. The synthesized hydrogels were characterized with field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The swelling and deswelling behaviors of the hydrogels in response to the ionic strength of the buffer solution were investigated. The Schott's swelling kinetic model was used to elucidate the swelling behavior of the hydrogels. The swelling and deswelling rates of the hydrogels prepared via freezing polymerization were faster than those of the hydrogels prepared via conventional polymerization. This was attributed to the large mean pore size of the freeze‐polymerized hydrogels. The PAAc/PASP hydrogels that underwent freezing polymerization had better swelling–deswelling characteristics than the PAAc hydrogels. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43515.  相似文献   

19.
Low back pain caused by intervertebral disc degeneration is one of the most common spinal disorders among patients seeking medical treatment. The most common surgical treatments are spinal fusion and total disc arthroplasty, both of which are very invasive surgical procedures. Nucleus pulposus replacement is an earlier stage intervention for disc degeneration. One of the material classes being studied for this application is hydrogels: a three‐dimensional hydrated network of polymer(s), which mimics the mechanical and physiological properties of the nucleus. Poly(vinyl alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), and poly(ethylene glycol) (PEG) hydrogels have previously been shown to be great candidate materials for injectable nucleus pulposus replacement, but have experienced issues with swelling and mass retention. The addition of chemical crosslinking to the PVA/PVP/PEG hydrogel system will allow tailoring of the swelling, mechanical, injectability, and mass loss properties of the hydrogel network. Two chemical crosslinking methods were evaluated for the PVA/PVP/PEG hydrogel system by characterizing the hydrogels with compression, swelling, and spectroscopy experiments. The results of these experiments led to the selection of the difunctional crosslinking strategy using PEG functionalized with terminal epoxide group (PEG diglycidyl ether) as the preferred crosslinking method. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40843.  相似文献   

20.
Poly(acrylamide‐co‐itaconic acid) (PAAmIA) and poly(acrylic acid‐co‐itaconic acid) (PAAIA) copolymeric hydrogels were prepared with different compositions via free‐radical polymerization. Ethylene glycol dimethacrylate (EGDMA) was used as an original crosslinker for these monomers. Gelation percentages of the monomers were studied in detail and it was found that addition of IA into the monomer mixture decreased the gelation percentage. The variation in swelling values (%) with time, temperature, and pH was determined for all hydrogels. PAA, which is the most swollen hydrogel, has the swelling percentage value of 2000% at pH = 7.4, 37°C. Swelling behaviors were explained with detailed SEM micrographs, which show the morphologic differences between dry and swollen hydrogels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5994–5999, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号