首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen permeation resistance of polyethylene (PE), polyethylene/ethylene vinyl alcohol copolymer (PE/EVOH), polyethylene/modified ethylene vinyl alcohol copolymer (PE/MEVOH), and polyethylene/modified polyamide–ethylene vinyl alcohol copolymer (PE/MPAEVOH) bottles was investigated. The oxygen permeation resistance improved significantly after the blending of ethylene vinyl alcohol copolymer (EVOH) barrier resins in PE matrices during blow molding; less demarcated EVOH laminas were found on the fracture surfaces of the PE/EVOH bottles. Surprisingly, the oxygen permeation resistance of the PE/MEVOH bottles decreased significantly, although more clearly defined modified ethylene vinyl alcohol copolymer (MEVOH) laminas were found for the PE/MEVOH bottles as the compatibilizer precursor contents present in the MEVOH resins increased. In contrast, after the blending of modified polyamide (MPA) in EVOH resins, more demarcated modified polyamide–ethylene vinyl alcohol copolymer (MPAEVOH) laminar structures were observed in the PE/MPAEVOH bottles as the MPA contents present in the MPAEVOH resins increased. In fact, with proper MPAEVOH compositions, the oxygen permeation resistance of the PE/MPAEVOH bottles was even better than that of the PE/EVOH bottles. These interesting oxygen barrier and morphological properties of the PE, PE/EVOH, PE/MEVOH, and PE/MPAEVOH bottles were investigated in terms of the free volumes, barrier properties, and molecular interactions in the amorphous‐phase structures of the barrier resins present in their corresponding bottles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2528–2537, 2004  相似文献   

2.
The main objective of this study is to investigate the barrier properties and mechanisms of polyethylene (PE), PE/modified polyamide (MPA), and PE/blends of MPA and ethylene vinyl alcohol copolymer (MPAEVOH) bottles against permeation of polar/nonpolar (acetone/white spirit) mixed solvents. The mixed solvent permeation resistance improves dramatically after blending MPA and MPAEVOH barrier resins in PE matrices during blow molding. By using the proper MPAEVOH compositions, the white spirit permeation rate of PE/MPAEVOH bottles at 40°C can be about 145 times slower than that of the PE bottle specimen; however, it is still 2.5 times faster than that of the PE/MPA bottles. In contrast, the rate of polar acetone solvent permeation through the PE bottle is much slower than that of white spirit and only slightly faster than that through the PE/MPA and PE/MPAEVOH bottle specimens. In contrast, the permeation rates of acetone/white spirit mixed solvents into PE/MPA bottles are at least 20–60 times faster than the summation permeation rates calculated using the simple mixing rule when the acetone contents in the mixed solvents are between 10 and 70 wt %. It is somewhat interesting that, after blending the proper amounts of EVOH in MPA, the mixed solvent permeation rates of PE/MPAEVOH bottles are dramatically reduced and are very close to the summation permeation rates calculated using the simple mixing rule when the acetone contents are in the particular “window” range. These interesting barrier properties of PE/MPA and PE/MPAEVOH bottle specimens were investigated in terms of the free volumes, barrier properties, molecular interactions in the amorphous phases of the barrier resins, and their resulting morphological structures that present in their corresponding bottles. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1333–1344, 2005  相似文献   

3.
An investigation of the gasoline permeation resistance of the as-blow-molded polypropylene, polypropylene/ethylene vinyl alcohol (PP/EVOH), polypropylene/modified polyamide (PP/MPA) and polypropylene/blends of modified polyamide and ethylene vinyl alcohol (PP/MPAEVOH) bottles is reported. The gasoline permeation resistance improves slightly after blending EVOH barrier resins in PP matrices during blow-molding, wherein only broken and less demarcated EVOH laminas were found on the fracture surfaces of the PP/EVOH bottle. In contrast, much better permeation resistance and more clearly defined MPA and MPAEVOH laminas were found for PP/MPA and PP/MPAEVOH bottles, respectively. The gasoline barrier properties and MPAEVOH laminar structures of PP/MPAEVOH bottles improve and become more demarcated, respectively, as the MPA contents present in MPAEVOH resin increase. In fact, by using the proper composition, the gasoline permeation rate of PP/MPAEVOH bottle is about 113 and 11 times slower than that of the as-blow-molded PP and PP/MPA bottles, respectively. In order to understand these interesting gasoline barrier and morphological properties descried above, the melt shear viscosities, thermal properties, wide-angle X-ray diffraction patterns and Fourier-transform infrared spectra of the base resins used in these bottle specimens were investigated.  相似文献   

4.
The main objective of this study was to investigate the barrier properties of polyethylene (PE), PE/modified polyamide (MPA), and PE/blends of modified polyamide and ethylene vinyl alcohol (MPAEVOH) bottles against white spirit permeation. After MPAEVOH barrier resins were blended with PE, the resistance of the PE/MPAEVOH bottles against white spirit permeation was significantly improved compared to the PE bottle. Surprisingly, with proper compositions of MPAEVOH resins, the white spirit permeation resistance of PE/MPAEVOH bottles at 40°C improved by more than 3000 times compared to the PE bottle, wherein the best permeation resistance (4200 times barrier improvement) of the PE/MPAEVOH bottles was found as the weight ratio of MPA : EVOH reached 4:1. These interesting permeation properties of PE/MPAEVOH bottles were investigated in terms of the barrier and free‐volume properties of the base resins and their corresponding morphologies in blow‐molded bottles. POLYM. ENG. SCI. 45:25–32, 2005. © 2004 Society of Plastics Engineers.  相似文献   

5.
An investigation of the gasoline permeation resistance of polyethylene (PE), polyethylene/modified polyamide (MPA), and polyethylene/blends of modified polyamide and ethylene vinyl alcohol (MPAEVOH) bottles is reported. The gasoline permeation resistance improves slightly after blending EVOH barrier resins in PE matrices during blow‐molding, wherein only broken and less demarcated EVOH laminas were found on the fracture surfaces of the PE/EVOH bottle. In contrast, much better permeation resistance and more clearly defined MPA and MPAEVOH laminas were found for PE/MPA and PE/MPAEVOH bottles, respectively. The gasoline barrier properties and MPAEVOH laminar structures of PE/MPAEVOH bottles improve and become more demarcated, respectively, as the MPA contents present in MPAEVOH resins increase. In fact, by using the proper composition, the gasoline permeation rate of PE/MPAEVOH bottles is about 450 and 3 times slower than that of the PE and PE/MPA bottles, respectively. These interesting gasoline barrier and morphological properties of PE, PE/MPA and PE/MPAEVOH were investigated in terms of melt shear viscosities and thermal properties of the base resins, and the chemical and physical amorphous phase structure present in their corresponding bottles.  相似文献   

6.
Investigations on white spirit and acetone permeation resistance of modified polyamide and nylon 6 clay (MPANYC) blends and their corresponding polyethylene/MPANYC bottles were reported in this study. The white spirit and acetone permeation resistance of MPANYC sheets improve consistently with increasing NYC contents present in MPANYC resins after blending nylon 6 clay (NYC) in modified polyamide (MPA) resins. However, the order of barrier improvement of the PE/MPANYC and PE/NYC bottle specimens is not corresponding to the order of barrier improvement of the MPANYC and/or NYC barrier resins added in PE. The blow-molded PE/NYC bottle specimen exhibits similarly worse white spirit and acetone solvent permeation resistance as the PE bottle specimen, wherein no clearly formed NYC laminas but only dispersed NYC droplets or agglomerates were found on the fracture surfaces of the PE/NYC bottles. However, after blending optimum compositions of MPANYC in PE, the PE/MPANYC bottles with demarcated MPANYC laminas exhibit significantly better white spirit and acetone permeation resistance than the PE/MPA bottle, wherein the white spirit and acetone permeation rates of the PE/MPA8NYC1 bottle are about 1.3 and 1.4 times slower than those of the PE/MPA bottle, respectively. In order to understand these interesting barrier properties of PE/MPANYC and PE/NYC bottles, rheological, thermal, wide angle X-ray diffraction and morphological properties of the base MPANYC and NYC resins and their corresponding morphology present in the blow-molded bottles were investigated.  相似文献   

7.
BACKGROUND: Ethylene–(vinyl alcohol) (EVOH) copolymer/organo‐modified montmorillonite (OMMT) composites were investigated. Composites with two different percentages by weight of OMMT were prepared using a melt‐extrusion procedure in a twin‐screw extruder, using EVOH as matrix. Films made of EVOH and EVOH/OMMT composites were prepared in a cast‐film extrusion line. RESULTS: The mechanical properties were evaluated by tensile tests and the fracture behaviour was analysed using the essential‐work‐of‐fracture (EWF) method. Fracture characterization was carried out for the two main processing directions: melt flow direction and transverse direction. Fractographic observations were made using scanning electron microscopy. CONCLUSION: The tensile test results indicated good compatibility between EVOH and OMMT. In addition, the fracture tests showed the influence of the clay particle arrangement on the fracture behaviour, showing an increase in the specific essential work of fracture, we, which was attributed to the EVOH–OMMT interaction. The plastic term, βwp, showed different trends depending on the test direction, explained by the size of the plastic zone and the restrictions to the EVOH plastic flow promoted by the clay particles. In this sense, the EWF method is shown to be a very useful tool for the analysis of structure–property relationships in polymer–organo‐clay composites. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
Production of polypropylene (PP) nanofibers below 1 μm in average diameter is difficult with conventional melt‐spinning. A nozzle‐free melt‐type electrospinning (M‐ESP) system with a line‐like CO2 laser beam melting device were used to produce PP nanofibers. To achieve the purpose, core [poly(ethylene‐co‐vinyl alcohol) (EVOH)]–clad (PP) nanofibers (average diameter, 0.88 μm) were fabricated from PP/EVOH/PP three‐layer films using the M‐ESP. The core–clad structure was formed by a wrapping phenomenon caused by the difference in the melt flow rates (MFRs) of PP and EVOH melts. Hollow PP nanofibers were obtained from the core–clad nanofibers by extraction of EVOH. Nanofiber diameter and hollow wall thickness could be altered by changing the MFR of the PP melt. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46393.  相似文献   

9.
The main objective of this study is to investigate the barrier mechanisms and properties of polyethylene, polyethylene (PE)/polyamide (PA) and polyethylene/modified polyamide (MPA) bottles against paint solvent permeation. In addition to the paint mixed solvent, the barrier properties of these bottles against the permeation of pure main solvents contained in the paint mixed solvent were investigated to understand the permeation mechanisms of the paint solvents. The paint solvent permeation resistance improves dramatically after blending PA and MPA barrier resins in PE matrices during blow‐molding. In fact, by using proper compositions, the white spirit permeation rates of PE/MPA and PE/PA bottles at 40°C are about 360 and 50 times slower than that of the PE bottle, respectively. Further investigations showed that, after blending the MPA and PA barrier resins in PE matrices, the hydrocarbon solvents present in the white spirit were nearly blocked without permeation during the permeation tests, i. e., PE/MPA bottles inhibited the permeation of hydrocarbon solvents more successfully than PE/PA bottles. In contrast, the rates of polar solvents with ketone, ether and alcohol functional groups permeating through the PE bottles are much slower than that of the white spirit and only slightly faster than those through the PE/PA and PE/MPA bottles. On the other hand, the paint mixed solvent permeation rates of PE bottles are approximately equal to the summation of permeation rates of the solvents present in mixed solvents calculated using a simple mixing rule. Somewhat surprising, the permeation rates of mixed solvents of PE/MPA bottles are dramatically faster than those calculated using a simple mixing rule, when the polar solvent contents are in a certain range.  相似文献   

10.
An ethylene/vinyl alcohol copolymer (EVOH) with superior barrier properties was used as an organic component to prepare EVOH/SiO2 hybrid materials with improved gas barrier properties with a sol–gel method. As a silane coupling agent, 3‐isocyanatopropyl triethoxysilane (IPTES) was used to promote interfacial attraction between the organic EVOH segments and the inorganic silicate network in the hybrid. The phase compatibility was evaluated by analysis of Fourier transform infrared spectroscopy and phase morphology and the optical properties of the hybrids. We confirmed that the addition of the silane coupling agent IPTES up to some level of content resulted in enhanced phase compatibility and optical transparency of the nanostructured hybrid material with a homogeneous phase morphology exhibiting no microphase separation. For the preparation of the monolayer coated film, the biaxially oriented polypropylene substrate pretreated with a corona was coated with the hybrid sols by a spin‐coating method. The oxygen permeation behavior through the coated film was examined with various contents of the silane coupling agent IPTES and inorganic silicate precursor tetraethoxyorthosilicate in the hybrid system. Consequently, it was revealed that an optimum range of IPTES and tetraethoxyorthosilicate contents was required to produce high barrier EVOH/SiO2 hybrid materials with a stable homogeneous microstructure and enhanced optical transparency. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Ethylene–vinyl alcohol copolymer (EVOH)/organoclay nanocomposites were prepared via a dynamic melt‐intercalation process. The effect of compatibilizers on the melt blending torque, intercalation level, and morphology of EVOH/organoclay systems was investigated. Maleic anhydride grafted ethylene vinyl acetate (EVA‐g‐ MA), or maleic anhydride grafted linear low‐density polyethylene (LLDPE‐g‐MA), were used to compatibilize EVOH with clay, at various concentrations (1, 5, and 10 wt %). Computer‐simulation techniques are used to predict structural properties and interactions of EVOH with compatibilizers in the presence and absence of clay. The simulation results strongly support the experimental findings and their interpretation. X‐ray diffraction shows enhanced intercalation within the galleries when the compatibilizers were added. Interestingly, results were obtained for the EVOH/clay/compatibilizer systems, owing to a high level of interaction developed in these systems. Thermal analysis shows that, upon increasing the compatibilizer content, lower crystallinity levels result, until at a certain compatibilizer content no crystallization is taking place. Significantly higher mixing viscosity levels were obtained for the EVOH/organoclay blends compared with the neat EVOH polymer. The storage modulus was higher compared with the uncompatibilized EVOH/organoclay blend in the presence of EVA‐g‐MA compatibilizer (at all concentrations), and only at low contents of LLDPE‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2060–2066, 2005  相似文献   

12.
In order to evaluate the compatibilizing effects of isocyanate (NCO) functional groups on ethylene vinyl alcohol copolymer/high density polyethylene (EVOH/HDPE) blends, HDPE grafted with 2-hydroxyethyl methacrylate-isophorone diisocyanate (HDEP-g-HI) was prepared and blended with EVOH. The grafting was confirmed by infrared spectra, and the grafting ratio was 4.9% from elementary analysis. From the morphologies of EVOH/HDPE-g-HI blends, it was found that an improved adhesion between the two components and finer dispersions were produced as a result of chemical reactions occurring during the melt blending. The depression of melting temperature of EVOH in the 10/90 EVOH/HDPE-g-HI blend indirectly indicated increased miscibility. The tensile strength of the EVOH/HDPE-g-HI blend was much higher than that of the EVOH/HDPE blend having no adhesion at each composition, and a dramatic increase in the impact strength was produced at the 90/10 EVOH/HDPE-g-HI blend composing of the fine HDPE-g-HI dispersions.  相似文献   

13.
In this study, the possibility of using a biodegradable grade of thermoplastic poly(ethylene‐co‐vinyl alcohol) with high (71 mol %) vinyl alcohol (EVOH‐29), as a carrier to incorporate the renewable and biodegradable component amylopectin (AP) into poly(lactic acid) (PLA) through melt blending, was investigated. The effect of using a plasticizer/compatibilizer (glycerol) in the blend systems was also investigated. In a first step, the EVOH/AP blends were produced and thereafter, in a second step, these were mixed with PLA. In this first study, the blend morphology was investigated using optical microscopy, scanning electron microscopy and Raman imaging spectroscopy and the thermal properties were measured by differential scanning calorimetry. Despite the fact that EVOH and AP are both highly polar, their blends were immiscible. Still, the blends exhibited an excellent phase dispersion on a micron level, which was enhanced further by the addition of glycerol. A good phase dispersion was finally observed by incorporation of the latter blends in the PLA matrix, suggesting that the proposed blending route can be successfully applied for these systems. Finally, the Differential scanning calorimetry (DSC) data showed that the melting point of EVOH dropped in the EVOH/AP blends, but the properties of the PLA phase was still relatively unaffected as a result of blending with the above components. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Poly(L ‐lactic acid) (PLLA) was blended with poly(ethylene‐co‐vinyl alcohol) (EVOH) in the presence of an esterification catalyst to induce reaction between the hydroxyl groups of EVOH and the terminal carboxylic group of PLLA. Nascent low‐molecular‐weight PLLA, obtained from a direct condensation polymerization of L ‐lactic acid in bulk state, was used for the blending. Domain size of the PLLA phase in the graft copolymer was much smaller than that corresponding to a PLLA/EVOH simple blend. The mechanical properties of the graft copolymer were far superior to those of the simple blend, and the graft copolymer exhibited excellent mechanical properties even though the biodegradable fraction substantially exceeded the percolation level. The grafted PLLA reduced the crystallization rate of the EVOH moiety. Melting peak temperature (Tm) of the PLLA phase was not observed until the content of PLLA in the graft reaction medium went over 60 wt %. The modified Sturm test results demonstrated that biodegradation of EVOH‐g‐PLLA took place more slowly than that of an EVOH/PLLA simple blend, indicating that the chemically bound PLLA moiety was less susceptible to microbial attack than PLLA in the simple blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 886–890, 2005  相似文献   

15.
Gel permeation chromatography (GPC) and solid‐state 13C‐NMR techniques were used to analyze the structural changes of poly(vinyl chloride) (PVC) in blends of a low‐density polyethylene (LDPE) and PVC during melt blending. The GPC results showed that the weight‐average molecular weight (Mw) of PVC increased with LDPE content up to 13.0 wt % and then decreased at a LDPE content of 16.7 wt %, whereas the number‐average molecular weight remained unchanged for all of LDPE contents used. The 13C‐NMR results suggest that the increase in Mw was associated with the formation of a LDPE‐g‐PVC structure, resulting from a PVC and LDPE macroradical cross‐recombination reaction during melt blending. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3167–3172, 2004  相似文献   

16.
Poly(ethylene‐co‐vinyl acetate) with 55 wt % vinyl acetate units (EVA55) was cryogenically ground and saponified in KOH/ethanol solution to obtain poly(ethylene‐co‐vinyl alcohol) (EVOH55). Polymeric antimicrobial agents were synthesized by reacting three antimicrobial agents, 4‐aminobenzoic acid (ABA), salicylic acid (SA), and 4‐hydroxy benzoic acid (HBA) with EVOH55. The polymers became more flexible and exhibited lower melting peak temperature and heat of fusion as the content of the chemically bound ABA, SA, and HBA units increased. These phenomena appeared more significant in the order of ABA < HBA < SA. S. aureus, Gram‐positive bacterium, was more susceptible to the polymeric antimicrobial agents than P. aeruginesa, Gram‐positive bacterium. The antimicrobial activity increased in the order of EVOH55‐HBA < EVOH55‐ABA < EVOH‐SA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 765–770, 2004  相似文献   

17.
Ethylene–vinyl alcohol copolymer (EVOH) and linear low‐density polyethylene (LLDPE) blends with 5% LLDPE grafted with 1% maleic anhydride (MAH; EVOH/LLDPE/LLDPE‐g‐MAH), created to increase the interfacial compatibility, were coextruded with pure LLDPE through the microlayer coextrusion technology. The phase morphology and gas‐barrier properties of the alternating‐layered (EVOH/LLDPE/LLDPE‐g‐MAH)/LLDPE composites were studied by scanning electron microscopy observation and oxygen permeation coefficient measurement. The experimental results show that the EVOH/LLDPE/LLDPE‐g‐MAH and LLDPE layers were parallel to each other, and the continuity of each layer was clearly evident. This structure greatly decreased the oxygen permeability coefficient compared to the pure LLDPE and the barrier percolation threshold because of the existence of the LLDPE/EVOH/LLDPE‐g‐MAH blend layers, and the LLDPE layers diluted the concentration of EVOH in the whole composites. In addition, the effects of the layer thickness ratio of the EVOH/LLDPE/LLDPE‐g‐MAH and LLDPE layers and the layer number on the barrier properties of the layered composites were investigated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42211.  相似文献   

18.
Ethylene‐vinyl alcohol copolymers (EVOH) were prepared by the conventional saponification of poly(ethylene‐co‐vinyl acetate) using a solution of potassium hydroxide in ethanol. An organic fungicide, consisting of a 2‐benzimidazole carbamoyl (CBZ) group supported on EVOH (EVOH‐CBZ), was prepared by the transesterification reaction of methyl 2‐benzimidazole cabamate (carbendazim) with EVOH. The antifungal activity of the synthesized polymers was examined by the halo zone test against Aspergillus fumigatus and Penicillium pinophilum. The synthesized EVOH‐CBZ complex showed a strong antifungal activity. The bound CBZ units were susceptible to hydrolysis. CBZ bonded to an epoxy resin precursor, diglycidyl ether of bisphenol A (DGEBA‐CBZ), retained its antifungal activity, which was somewhat weaker in comparison with that of EVOH‐CBZ. When the DGEBA‐CBZ complex was crosslinked by isophoronediamine, the antifungal activity disappeared almost completely, indicating that it is necessary for the CBZ units to release from their polymer supports to have the antifungal effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 728–736, 2001  相似文献   

19.
The drawing and ultimate tensile properties of the modified PA 6 (MPA) fiber specimens prepared at varying drawing temperature were systematically investigated, wherein the MPA resins were prepared by reactive extrusion of PA 6 with the compatibilizer precursor (CP). At any fixed drawing temperature, the achievable draw ratio (Dra) values of MPA as‐spun fiber specimens increase initially with increasing CP contents, and then approach a maximum value, as their CP contents are close to the 5 wt% optimum value. The maximum Dra values obtained for MPA as‐spun fiber specimens prepared at the optimum CP content reach another maximum as their drawing temperatures approach the optimum drawing temperature at 120°C. The tensile and birefringence values of PA 6 and MPA fiber specimens improve consistently as their draw ratios increase. Similar to those found for their achievable drawing properties, the ultimate tensile and birefringence values of MPA fiber specimens approach a maximum value, as their CP contents and drawing temperatures approach the 5 wt% and 120°C optimum values, respectively. Investigations including Fourier transform infrared, melt shear viscosity, gel content, thermal and wide angle X‐ray diffraction experiments were performed on the MPA resin and/or fiber specimens to clarify the optimum CP content and possible deformation mechanisms accounting for the interesting drawing, birefringence, and ultimate tensile properties found for the MPA fiber specimens prepared in this study. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
The ring‐opening polymerization of ε‐caprolactone was carried out with poly(ethylene‐co‐vinyl alcohol) as a macroinitiator to synthesize poly(ethylene‐co‐vinyl alcohol)‐graft‐polycaprolactone (EVOH‐g‐PCL). A simple low‐density polyethylene (LDPE)/polycaprolactone (PCL) (64/36) blend lost 5.3 wt % of its original weight after 90 days of a soil burial test. However, the elongation at break of the LDPE/PCL blend remained almost invariable even after the solid burial test because the tensile properties depended mostly on the LDPE phase on account of the poor interaction between the continuous LDPE matrix and the dispersed PCL phase. For EVOH‐g‐PCL, the elongation at break decreased drastically as a result of the soil burial test, and the reduction of the elongation at break was more pronounced for EVOH‐g‐PCL with a higher PCL concentration, even though the weight loss of EVOH‐g‐PCL after the soil burial test was as low as 1.2–1.3% and was nearly independent of the PCL concentration. Few holes were observed in EVOH‐g‐PCL when the PCL concentration was less than 26 wt % after an accelerated hydrolysis experiment at 60°C for 7 days in a 0.1M KOH solution. In contrast, the hydrolysis formed small holes in EVOH‐g‐PCL with a PCL concentration of 36 wt %. The LDPE/PCL blend was much better percolated, as a result of the hydrolysis, than EVOH‐g‐PCL with the same PCL concentration; the soil burial test showed the same results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1064–1071, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号