首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
机械合金化法制备TiFe基储氢合金的研究   总被引:1,自引:0,他引:1  
采用机械合金化法,以Ti、Fe粉为原料制备TiFe基储氢合金。详细考察了机械合金化法制备TiFe纳米储氢合金的制备工艺,分析了球磨过程中球磨气氛、球磨介质、转速、球料比以及球磨时间等因素对产物性能的影响;采用x射线衍射分析(XRD)、扫描电镜分析(SEM)及粒度分布等方法研究了合金体系的相结构、微观组织形貌和粒度等。  相似文献   

2.
金属镁具有储氢密度大、价格低廉、资源丰富等优点,是当前最有发展前景的储氢材料之一,但其动力学性能差,需要高温才能吸收和放出氢气.为了改善其储氢性能,除制备镁基合金外,利用机械球磨法制备镁基复合储氢材料也得到了广泛研究.对目前制备的镁基复合储氢材料进行了分类,并分别介绍了各类的研究进展.  相似文献   

3.
纳米储氢合金制备方法的研究进展   总被引:5,自引:0,他引:5  
纳米储氢合金的热力学与动力学性能明显超过了相应的微米级合金 ,引起了储氢合金研究者的关注 ,而目前纳米储氢合金的制备方法仅集中于球磨法。本文总结了纳米储氢合金颗粒与复合材料的制备方法 ;并从纳米材料制备技术的角度 ,对潜在的纳米储氢合金的制备方法进行了评述  相似文献   

4.
机械合金化制备镁系储氢材料的研究进展   总被引:4,自引:2,他引:2  
机械合金化法是新近发展起来的制备镁系储氢材料的较佳工艺.综述了国内外采用该法制备镁系储氢材料的研究进展情况,报道了机械合金化法制备MgH4、Mg2Ni、多元镁基储氢合金、非晶态镁系储氢合金及纳米复合镁系储氢材料的最新研究成果,总结认为,机械合金化可以显著改善镁系储氢材料的动力学性能和电化学性能,提高储氢量.  相似文献   

5.
罗晓东  张静  靳晓磊  胡宾宾 《材料导报》2007,21(Z2):118-120,135
对狭义的储氢材料进行了简要介绍,总结归纳了金属氢化物、纳米储氢材料和配位氢化物等几种主要储氢材料的特点.概述了制备储氢材料所用的几种主要方法:高温熔炼法、机械合金化法、氢化燃烧合成法、化学合成法和烧结法,并对目前的研究现状进行了归纳和评述,展望了未来储氢材料及其制备方法的发展方向.  相似文献   

6.
乔玉卿  赵敏寿  田冰  朱新坚  曹广益 《功能材料》2005,36(12):1875-1878
利用高能球磨方法制备纳米Mg2Ni储氢合金,用于高容量MH/Ni电池氢化物电极电化学性能研究。XRD和TEM测试结果表明,机械合金化方法制备Mg2Ni合金的历程为合金化——非晶化——纳米晶化,球磨时间直接影响Mg2Ni合金的结构。高能球磨20h可以制备非晶态Mg2Ni合金,比普通的机械合金化方法制备非晶态Mg2Ni合金的时间减少了约5倍之多;高能球磨30h可以制备纳米晶态Mg2Ni合金,粒径在10nm以下,有团聚现象。研究了Mg2Ni纳米氢化物电极在不同温度下的电化学性能,并从热力学角度就Mg2Ni纳米氢化物电极的某些高温电化学性能进行了解释和推测。实验结果表明:在30~70℃范围内,随着温度增加,氢化物电极的电化学容量逐渐增加,在70℃时电化学容量可达530.5mAh/g,约为30℃放电容量273.2mAh/g的2倍,Mg2Ni纳米氢化物电极具有较好的高倍率放电性能及大电流充放电性能,这表明机械合金化方法制备的Mg2Ni纳米氢化物电极具备电动车用大型MH/Ni电池负极材料的初步条件,但容量衰减严重。  相似文献   

7.
球磨时间对镁碳复合储氢材料结构和性能的影响   总被引:2,自引:0,他引:2  
采用氢气气氛中高能球磨反应法,制备了40Mg60C镁碳复合储氢材料,研究了球磨时间对材料粒度、晶体结构和放氢性能的影响.结果表明,球磨2h材料的粒度即可达纳米级,约10~20nm,球磨时间再延长,材料团聚程度加重;球磨2h的材料为纳米晶和非晶结构,当球磨时间增加到4h时,材料几乎成为非晶结构;球磨时间4h时,材料储氢量已趋于饱和,最大放氢量为3.15%(质量分数);材料放氢温度随球磨时间的增加而降低,球磨5h材料的初始放氢温度和放氢峰温降为275.18和314.94℃.  相似文献   

8.
高能球磨法制备纳米材料   总被引:2,自引:0,他引:2  
本文系统地综述了用高能球磨法制备纳米晶材料的国内外现状。通过微观结构和性能方面的比较,发现用机械球磨方法制备的纳米晶与原子沉积法获得的材料具有相似的结构和性质。该方法工艺简单,近年来已成为制备纳米材料的一条重要途径。如可用于制备纳米结构的纯金属,金属间化合物,不互溶体系合金,氧化物弥散强化金属复合材料等。  相似文献   

9.
大塑性变形制备超细晶储氢材料的研究进展   总被引:1,自引:1,他引:0  
分别从机械合金化、等径角挤压、累积叠轧、往复挤压和高压扭转等制备技术出发介绍了大塑性变形制备超细晶储氢材料的研究进展,认为块体机械合金化技术在制备储氢材料方面比传统球磨技术更具优势,提出弄清纳米材料的储氢机理是大幅度提高吸放氢性能的关键,开发储氢性能优异材料的同时要兼顾其力学性能.  相似文献   

10.
简要地综述了储氢材料在催化加氢、脱氢反应中的应用以及用储氢材料制备催化剂的方法,如冶炼法、共沉淀法、机械合金化、急冷非晶化等。并介绍了为提高活性而采用的预氧化、氢化、酸浸等预处理方法。  相似文献   

11.
机械合金化是最近发展起来的制备储氢材料的新型工艺,在改善材料结构和储氢性能方面显示出非常有效的作用.然而,在机械合金化过程中的各种因素,包括球磨时间、球磨环境、球料比等,对合金的结构和储氢性能有不同程度的影响.综述了国内外在机械合金化方面的研究,为更进一步探索通过调整这些因素来改善储氢合金性能有一定的指导意义.  相似文献   

12.
氢能是理想的清洁能源之一,已引起人们广泛的重视。为了充分利用氢能使用的分散性及不连续性等优点,必须解决氢的储存及运输问题,储氢材料则可能是可供选择的最佳方法。储氢材料的研究是氢能利用的关键技术,具有高储氢容量的纳米炭纤维的研究将促进氢能的发展。 本项目以具有高储氢能力的纳米炭纤维的制备和储氢特性研究为目标,利用气相流动催化法和高压容积法对纳米炭纤维  相似文献   

13.
以碳酸锂、草酸亚铁、纳米二氧化硅为原料,采用机械球磨和固相法相结合的方法制备了Li2FeSiO4正极材料。考察了球磨工艺对Li2FeSiO4正极材料电化学性能的影响,结果表明:在丙酮为溶剂,固液比为7∶24,球磨时间12h条件下制备的Li2FeSiO4正极材料具有较好的电化学性能。  相似文献   

14.
铝对镁碳储氢材料性能的影响   总被引:1,自引:1,他引:0  
在球磨法制备镁碳储氢材料的过程中添加铝,制备了储氢材料50Mg40C10Al.用透射电子显微镜、X射线衍射和差示扫描量热分析对储氢材料的粒度、结构和教氢温度进行了测定.结果表明,球磨过程中铝不储氢;添加铝能提高铗碳储氢材料的储氢密度并降低其放氢温度,50Mg40C10Al的储氢密度达5.82%(质量分数),初始放氢温度为227.4℃.  相似文献   

15.
将微晶碳和镁粉在H2气氛中反应球磨复合,球磨时间为3h,制备的镁碳复合材料的平均粒度在20~120nm,说明适量微晶碳的引入,在短时间内,可实现镁粉的纳米化。对其进行吸氢性能研究,70Mg30C材料的储氢密度,在8min内可达5.0%(wt),微晶碳含量越高,储氢时间越短。储氢体系温度瞬间升高200℃,得益于微晶碳在球磨中的助磨作用和镁粉吸氢的催化作用。  相似文献   

16.
反应球磨法制备镁/碳纳米复合储氢材料   总被引:1,自引:0,他引:1  
将无烟煤进行脱灰和碳化,制备微晶碳, 再将微晶碳和铝添加到镁中,用氢气反应球磨法制取镁/碳纳米复合储氢材料.用透射电子显微镜、选区电子衍射、X射线衍射和差示扫描量热分析对储氢材料的粒度、晶体结构和放氢温度进行了测定.结果表明,微晶碳是镁粉的高效助磨剂,添加40%(质量分数)的微晶碳,球磨3h,即可将镁磨至20~40nm;添加微晶碳和铝能降低储氢材料的放氢温度;微晶碳具有类似石墨结构,较易磨至纳米级,层片之间能够储氢.  相似文献   

17.
纳米炭纤维的储氢性能初探   总被引:6,自引:0,他引:6  
主要阐述了用流动催化剂法制备的纳米炭纤维的储氢特性,发现在室温下纳米炭纤维可以快速大量吸氢纳米炭纤维的储氢量远远高于目前各种储氢材料的储氢容量100nm左右的炭纤维的储氢容量高达10%以上(质量分数),如此高的储氢容量使其在燃料电池等方面具有厂阔的应用前景.  相似文献   

18.
作为近年来的材料"明星"石墨烯,其制备方法的研究大多集中在化学方向,然而其许多本征物性的发现却来自于微机械剥离法制备的石墨烯。本文全面介绍了各类机械法诸如胶带法,"纳米铅笔"法,超薄切片法,超声波法,行星式球磨法,搅拌球磨法,低能纯剪切磨法和三辊磨剥法制备石墨烯的研究进展,评述了以上制备方法的特点及其面临的问题,并展望了机械法制备石墨烯的未来发展前景。  相似文献   

19.
高岩  罗堪昌 《功能材料》1998,29(3):256-259
研究了Ti-Fe和Ti-Fe-Mn纳米晶储氢合金的机械合金化制备,用X-ray衍射分析了Ti-Fe和Ti-Fe-Mn在高能球磨的机械合金化过程中的结构变化及获得的FeTi相的晶粒尺寸。此外,还考察了球磨条件包括气氛、球磨机转速等对球磨过程中结构变化的影响。研究结果表明:采用适当的球磨参数并辅以后续热处理,可以制备出不同晶粒尺寸的纳米晶储氢合金,在本研究中获得的FeTi合金的最小平均晶粒尺寸可达13nm。  相似文献   

20.
利用机械反应球磨法制备了镁基储氢材料,在连续操作固定床反应器上,以噻吩为模型化合物,研究了温度对镁基储氢材料与噻吩反应的影响。结果表明:反应温度过低,储氢材料将无法为噻吩加氢反应供氢,噻吩不发生加氢反应;反应温度过高,噻吩加氢反应生成的C4烃容易发生积碳反应。只有在特定温度范围内,储氢材料才能与噻吩反应生成C4烃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号