首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对聚磷酸铵(APP)耐水性不足、与聚丙烯(PP)等高分子材料相容性差等问题,采用甲醛-三聚氰胺(蜜胺树脂)和环氧树脂双层包覆了APP(EM-APP),采用红外、扫描电镜、热重分析、溶解度测试等方式表征了包覆效果;采用水平垂直燃烧、氧指数仪和锥形量热仪、热重-红外联用等设备考察了包覆APP用于阻燃PP的效果,探讨了阻燃机理。结果表明:包覆操作不但有效提高了APP的耐水性,且将具有成炭功能的包覆层引入到APP表面;EM-APP相较APP,800℃时残炭量提高14.2%,在聚丙烯中加入同样质量份时,前者具有更高的阻燃效率,热释放速率、总热释放量、烟释放速率和总烟释放量都明显降低;包覆改善了APP与PP的相容性;燃烧过程中包覆层起到了协同成炭的作用。  相似文献   

2.
采用甲醛三聚氰胺树脂(蜜胺树脂)和环氧树脂单层或双层包覆了聚磷酸铵(APP),并用于阻燃聚丙烯(PP),采用傅里叶红外光谱、扫描电子显微镜、水平垂直燃烧仪、氧指数仪等设备对包覆APP及阻燃PP进行了表征与分析。结果表明,经过包覆处理的APP水溶性降低,具有更高的膨胀率和阻燃效率;且双层包覆的APP具有最低的水溶性和最好的阻燃效果;相对纯APP,包覆APP对PP的力学性能影响更小,与PP基体具有更好的界面结合。  相似文献   

3.
三聚氰胺包覆聚磷酸铵阻燃环氧树脂的研究   总被引:1,自引:0,他引:1  
研究了三聚氰胺包覆聚磷酸铵(MPP)与季戊四醇(PER)阻燃环氧树脂的燃烧性能。通过热重分析初步探讨了MPP/PER阻燃剂对环氧树脂的阻燃机理。结果表明:MPP/PER对环氧树脂具有很好的阻燃作用,能有效提高环氧树脂的氧指数和垂直燃烧性能,降低环氧树脂的热释放速率,使燃烧过程变得稳定,降低环氧树脂的火灾危险性。热重分析表明:添加了阻燃剂以后,环氧树脂的初始分解温度降低,残炭量显著增加,阻燃剂发挥了凝聚相阻燃的作用。  相似文献   

4.
为构建膨胀聚丙烯(PP)阻燃体系,采用原位聚合法制备环氧树脂包覆聚磷酸铵微胶囊(EP-APP)以改善APP与PP材料的相容性,并选用季戊四醇(PER)为成炭剂与EP-APP构成膨胀型阻燃剂(IFR),制备PP/EP-APP/PER阻燃复合材料。以微胶囊的水溶性为指标优化微胶囊包覆工艺,考察了EP-APP与PER质量比和IFR添加量对复合材料的阻燃性能及力学性能的影响,分析了IFR中EP-APP与PER的反应机理。结果表明,当EP加入量为APP质量的10%、固化剂三乙烯四胺(TETA)用量为EP质量的15%时,采用40℃(1 h)+70℃(1 h)的固化反应温度设置,可制得有良好耐水性的EP-APP微胶囊。当IFR质量分数为25%,IFR中EP-APP与PER质量比为3∶1时,制得PP/APP/PER阻燃复合材料的极限氧指数(LOI)达到35.0%,垂直燃烧性能达到UL 94 V-0等级,且复合材料仍能保持较好的拉伸性能。热重分析表明,IFR的分解反应可分为三个阶段:首先是EP-APP受热分解后与PER发生反应,生成含有磷酸酯键的物质;然后是酯类化合物生成稳定的环状酯并释放出H...  相似文献   

5.
通过原位聚合法制备三聚氰胺-甲醛树脂(MF)微胶囊包覆聚磷酸铵(APP)粒子,研究了APP粒径对微胶囊化APP(MCAPP)结构与性能的影响。将两种MCAPP(APP平均粒径分别为5,15μm)添加至聚丙烯(PP)基体中,研究了PP/MCAPP阻燃材料的性能。结果表明:不同粒径的APP均能成功被MF包覆,且包覆后的APP粒子的水溶性均大幅下降。PP/MCAPP阻燃材料的耐渗析性和极限氧指数均得到一定程度的提高。粒径小的APP有利于MF的包覆,包覆结构层更完整。MF和APP有很好的协同作用,在APP包覆不完全的情况下,能更有效地发挥两者的相互作用,提高PP复合材料的阻燃性。  相似文献   

6.
以正硅酸乙酯(TEOS)与乙烯基三乙氧基硅烷(VTOS)为前驱物,采用溶胶凝胶工艺将乙烯基引入聚磷酸铵(APP)的表面,以期对APP进行二次接枝改性。对VTOS改性APP(VMAPP)进行了研究,并研究了其对环氧树脂(EP)阻燃性能的影响。结果表明,包覆膜材料中存在乙烯基;经含有乙烯基的聚硅氧烷对APP进行包覆改性后,在APP表面生成一层致密的保护膜,表面P、N 元素含量明显降低,C元素含量明显增加,出现Si元素的吸收峰;VMAPP的疏水性及耐水性均得到改善;VMAPP能够促使EP生成更为致密和稳定的炭层,促进EP阻燃性能的改善。  相似文献   

7.
利用环氧树脂(EP)包覆聚磷酸铵(APP)复配得到无卤膨胀型阻燃剂(IFR),并对聚丙烯阻燃改性。利用扫描电镜(SEM)观察包覆的APP的形貌;使用热重分析仪和万能材料试验机对阻燃改性PP的性能进行了表征。结果表明:随着EP的质量分数增加,在APP表面形成的包覆层逐渐均匀变厚,使其疏水性增加,水溶解性降低。当EP的质量分数为5%至7%时,包膜较致密,复配得到的PP/IFR的阻燃性能显著提升的同时,材料的力学性能变化不大。阻燃剂的加入使得PP的反应活化能在不同阶段均有较大提升,且与膨胀型阻燃机制相符。  相似文献   

8.
微胶囊化聚磷酸铵阻燃环氧树脂的研究   总被引:2,自引:0,他引:2  
为改善聚磷酸铵(APP)与环氧树脂等高聚物的相容性和耐水性,采用原位聚合法在其表面包覆尿素-甲醛树脂(脲醛树脂)、三聚氰胺-甲醛树脂(蜜胺树脂)和脲醛-蜜胺双层树脂,用XRD、SEM和FT-IR等手段对包覆前后的聚磷酸铵的结构进行表征,并将其加入到环氧树脂(EP)中,用热分析(TG)、极限氧指数分析(LOI)和垂直燃烧试验(UL94)测试其阻燃性能。结果表明:聚磷酸铵表面分别包覆了3种斥水性树脂,从而改善了其与环氧树脂的相容性和耐水性;微胶囊化的聚磷酸铵使环氧树脂具有良好的热稳定性,初始分解温度从150℃提高到300℃;将15 g微胶囊化的聚磷酸铵与15 g季戊四醇混合后,加入到70 g环氧树脂中,LOI从19%上升到29%以上,UL94达到了V-1以上,显示出了优异的阻燃性能。  相似文献   

9.
分别以二甲基二乙氧基硅烷(DMDES)、甲基三乙氧基硅烷(MTES)、苯基三甲氧基硅烷(PTMS)3种硅氧烷与正硅酸四乙酯(TEOS)共同作为前驱体,采用溶胶-凝胶工艺对聚磷酸铵(APP)进行微胶囊化包覆改性,分别制备得到改性聚磷酸铵APP/DMDES、APP/MTES和APP/PTMS,以改善其阻燃性、热稳定性和疏水性。通过傅里叶红外光谱、水接触角、扫描电子显微镜、能谱仪以及热失重分析等测试与表征手段,对3种不同聚硅氧烷包覆改性聚磷酸铵(MAPP)进行了对比研究,并研究了MAPP对低密度聚乙烯(PE-LD)阻燃性能、力学性能和热性能的影响。结果表明,在合适的工艺条件下,均可以制备得到聚硅氧烷包覆改性聚磷酸铵;较改性前的APP,改性聚磷酸铵的疏水性和热稳定性均显著提高;在PE-LD/APP/PTMS/季戊四醇(PER)/三聚氰胺(MEL)的质量比为65/18.7/11.7/4.6时,PELD复合材料的综合性能最好,极限氧指数为26.6%,高于包覆前APP的23.3%,达到UL 94 V-0级别,且拉伸性能最高,为12.84 MPa。  相似文献   

10.
孔淳  吴双邯  焦健悦  程婷  王菲  于守武 《塑料》2020,49(2):10-13
将密胺树脂-硼酸锌作为囊材,对次磷酸铝(AHP)进行双层包覆,形成一种具有核壳结构的双层包覆阻燃剂DE-AHP。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(FT-IR)、热重(DTG)等方法对产物进行表征。将DE-AHP与聚对苯二甲酸丁二醇酯(PBT)进行熔融共混,采用锥形量热仪、氧指数仪等设备研究了DE-AHP的加入量对PBT复合材料阻燃性能的影响。结果表明,双层包覆提高了AHP的热稳定性,热分解温度由纯AHP的327℃升高到378℃,且700℃时的残炭量也明显提高。在PBT中添加20%的DE-AHP,复合材料的极限氧指数为27.6%,能够达到UL-94 V-0阻燃等级,且其热释放速率峰值、总热释放量、总烟释放量显著降低。  相似文献   

11.
主要研究了聚磷酸铵(APP)对E51型环氧树脂阻燃性能影响的研究,将聚磷酸铵(APP)作为阻燃剂,加入到双酚A环氧树脂E51(EP)中,固化剂选用聚酰胺600#。对制备的阻燃环氧树脂进行了极限氧指数(LOI),力学性能,热失重分析(TGA),动态热机械分析仪(DMA),扫描电镜(SEM)等方面的分析,研究结果表明聚磷酸铵(APP)能够与双酚A环氧树脂E51(EP)具有很好的相容性,阻燃效果较好。对阻燃机理进行了深入的研究。  相似文献   

12.
通过原位聚合法制备了以环氧树脂(EP)为壁材,三聚氰胺聚磷酸盐(MPP)为芯材的环氧包覆三聚氰胺聚磷酸盐(EPMPP),将其与二乙基次磷酸铝(ADP)复配后制备了阻燃乙烯-醋酸乙烯酯共聚物(EVA)复合材料,并对阻燃材料材料进行了极限氧指数、UL 94垂直燃烧测试以及热失重分析表征。结果表明,当ADP与EPMPP质量比为2:1、添加量为40%(质量分数,下同)时,阻燃复合材料的极限氧指数达到最高值31%,UL 94垂直燃烧测试达V-0级;EVA/ADP/EPMPP阻燃复合材料的初始分解温度为303℃,850℃时残炭量为18%,较EVA/ADP/MPP阻燃复合材料有较大幅度的提高。  相似文献   

13.
聚磷酸铵(APP)单独应用于阻燃环氧树脂(EP)时,阻燃效率较低,往往需要较大的添加量才能达到环氧树脂复合材料的阻燃要求.通过制备层状双金属氢氧化物Zn-Fe-LDH,然后将其与聚磷酸铵复配引入环氧树脂中,成功制备出阻燃型复合材料(Zn-Fe-LDH+APP)/EP.极限氧指数(LOI)及垂直燃烧(UL94)测试表明,...  相似文献   

14.
将聚磷酸铵(APP)作为阻燃剂,加入到环氧树脂E44(EP)中,固化剂选用聚酰胺200#,制备出的阻燃环氧固化物具有一定的阻燃性能,研究结果表明聚磷酸铵(APP)与环氧树脂E44具有很好的相容性,阻燃效果较好。当加入聚磷酸铵达到20份的时候,阻燃环氧树脂的极限氧指数达到33.4%。并通过对制备的阻燃环氧树脂进行极限氧指数(LOI)、热失重分析(TGA)、动态热机械分析仪(DMA)、扫描电镜(SEM)等方面的分析,对环氧树脂固化物的阻燃机理进行了深入的研究。  相似文献   

15.
16.
微胶囊聚磷酸铵的制备及阻燃环氧树脂的性能研究   总被引:1,自引:0,他引:1  
采用三聚氰胺甲醛树脂预聚物通过原位聚合法制备了微胶囊聚磷酸铵阻燃剂(MAPP),利用扫描电镜观察到MAPP颗粒表面包覆了一层树脂。采用热重分析法、垂直燃烧法和氧指数法研究了聚磷酸铵(APP)和MAPP阻燃环氧树脂材料的热性能及阻燃性能。结果表明:与APP相比,MAPP阻燃环氧树脂的最大失质量温度、残炭量以及阻燃性能均显著提高。添加10%APP或MAPP的环氧树脂材料的氧指数均大于27.0%,阻燃性能均达到UL 94 V-0级,且MAPP样条燃烧后可形成膨胀炭层。相比于APP,MAPP阻燃材料的力学强度均有所改善,当阻燃剂填充10%时材料的拉伸强度从32.6 MPa提高到35.7 MPa,冲击强度从10.8 kJ/m2提高到11.6 kJ/m2,均高于纯环氧树脂材料的力学强度。  相似文献   

17.
《国外塑料》2007,25(7):96-96
用300千瓦热量的标准点火源点燃一间餐厅包厢墙壁的软包装修材料,产生的1000多摄氏度的高温和巨大热量使餐桌上的玻璃转盘炸裂,但餐厅墙壁的软包装修材料——蜜胺泡沫塑料基本未燃。6月6日上午,  相似文献   

18.
壳聚糖/聚磷酸铵膨胀阻燃PP的阻燃及抑烟性能   总被引:1,自引:0,他引:1  
为了提高聚丙烯(PP)的阻燃和抑烟性能,将壳聚糖(CS)作为膨胀型阻燃剂的碳源、聚磷酸铵(APP)作为膨胀型阻燃剂的酸源和气源,在此基础上通过熔融共混的方法制备了PP/CS/APP复合材料。采用极限氧指数仪、锥形量热仪等仪器研究了PP/CS/APP复合材料的的抑烟性及阻燃性。研究结果表明:CS/APP添加量为30%时,复合材料的极限氧指数值最大可达28.1%;且复合材料在烟气释放总量、CO和CO_2排放上明显降低,抑烟性得到了提升;热释放速率峰值、平均热释放速率值、平均有效燃烧热值、总热释放量值降低,成炭率升高,PP/CS/APP复合材料更难点燃;火灾性能指数明显提高,阻燃性能得到了大幅度提升,火灾蔓延指数显著减小,同时火灾危险性也相应降低。  相似文献   

19.
《塑料》2015,(4)
将聚磷酸铵(APP)与可膨胀石墨(EG)进行复配后添加到环氧树脂(EP)中,以间苯二胺(PDA)为固化剂,制备阻燃环氧树脂固化物,通过极限氧指数(LOI)、垂直燃烧(UL-94)和热重分析(TGA)测试研究了材料的阻燃性能、热降解行为,通过锥形量热(CONE)测试研究了材料的燃烧行为,通过扫描电镜(SEM)研究了材料炭层的形貌,同时还研究了APP与EG的不同配比对EP材料阻燃性能的影响。结果表明:当APP与EG的质量比为3∶2、添加量为5%时,阻燃EP材料通过了UL-94 V-0级,LOI值达到了29.0%。TGA测试结果表明:阻燃剂APP及EG的加入明显地改变了材料的热降解行为,促进了环氧树脂材料的提前降解和成炭,降低了材料的热降解速率,材料在700℃时的残炭量由14.6%提高到了29.9%。CONE测试结果表明:阻燃剂的加入明显降低了材料的热释放速率(HRR)和总热释放量(THR)。SEM测试结果表明:阻燃材料燃烧后形成了致密均一的炭层,能很好地阻止氧气和热量进入到材料的内部,同时减少可燃气体的逸出,从而抑制了基体树脂的进一步降解和燃烧,提高了材料的阻燃性能。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号