首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以氧化石墨(GO)和硝酸镍为原料,采用水热法制备氢氧化镍/还原氧化石墨烯(Ni(OH)_2/RGO)复合材料,通过FT-IR光谱、X射线衍射仪和扫描电镜表征了材料的形貌和结构,并采用循环伏安法、恒流充放电和交流阻抗谱测试了复合材料的电化学性能。结果表明,当水热温度为100℃时,制备了具有α相与β相互嵌型的α/β-Ni(OH)_2/RGO复合材料。在电解液为6 mol/L的KOH溶液中,放电倍率0.2C时复合材料比容量高达388.6mAh/g,放电倍率为10C时,复合材料比容量为266.1mAh/g,比容量保持率为68.5%,显现出良好的电化学性能。  相似文献   

2.
采用不同的制备方法以及控制反应条件制备出不同形貌、尺寸的纳米银,并采用透射电子显微镜对纳米银进行表征。研究结果表明:采用传统溶胶-凝胶法较成熟稳定,制得的纳米银为球形粒子,尺寸均匀,粒径60nm左右。将纳米银与氧化石墨烯(GO)复合后掺杂到磷酸铁锂(LiFePO_4)中,制得的LiFePO_4-纳米银/GO复合物的首次放电比容量达到158.6mAh/g,具有良好的电化学性能。  相似文献   

3.
为研究还原剂对Ni(OH)_2/还原氧化石墨烯(RGO)复合材料结构及电化学性能的影响,首先以氧化石墨烯(GO)和硝酸镍作前驱体,采用水热法制备了Ni(OH)_2/RGO复合材料;然后,利用XRD、SEM和Raman光谱仪表征了复合材料的结构和形貌,并采用循环伏安法、恒流充放电曲线和电化学阻抗谱研究了复合材料的电化学性能。结果表明:以(NH2)2CSO2作还原剂时,制备的β-Ni(OH)_2/RGO复合材料为RGO纳米片与Ni(OH)_2纳米片相互插层的结构;在电解液(6mol/L KOH溶液)中,0.2C放电倍率时β-Ni(OH)_2/RGO复合材料的比容量高达341.0mAh/g,10.0C放电倍率为时复合材料的比容量为242.2mAh/g,仍能保持β-Ni(OH)_2理论比容量的83.8%。所得结论表明制备的Ni(OH)_2/RGO复合材料显现出良好的电化学性能。  相似文献   

4.
以乙二醇作溶剂,采用溶剂热法,调节不同pH,合成了不同形貌的磷酸铁锂(LiFePO_4)纳米材料。对其进行银(Ag)/氧化石墨烯(GO)的复合,制得正四棱柱状LiFePO_4/Ag/RGO三元复合材料,并对其进行了测试。结果表明,在不同pH条件下合成的LiFePO_4/Ag/RGO三元复合材料均为橄榄石晶型LiFePO_4,在pH=10,0.2C倍率放电条件下,LiFePO_4/Ag/RGO三元复合材料的放电比容量达到154.06mAh/g,1C条件下50次循环容量保持率在96%以上。  相似文献   

5.
以氧化石墨(GO)和NiSO_4·6H_2O为前驱体,氨水为沉淀剂,用化学沉淀-回流法制备Ni(OH)_2/还原氧化石墨烯(RGO)复合材料,用XRD、SEM表征材料的结构和表面微观形貌,用循环伏安(CV)、恒电流充放电和电化学阻抗(EIS)测试电极材料的电化学性能,研究了GO:Ni(OH)_2质量比和氨水浓度对复合材料结构、形貌和电化学性能的影响。结果表明:所制备的β-Ni(OH)_2/RGO复合材料为Ni(OH)_2纳米片与RGO片相互插层的结构,当氨水的浓度为3 mol/L,GO:Ni(OH)_2=1:8(质量比)时复合电极材料在0.2C的放电比容量高达334.9 mAh/g,5C的放电比容量为260.2 mAh/g,保持在β-Ni(OH)_2理论比容量的90%,表现出良好的倍率性能和循环性能。  相似文献   

6.
通过对氧化石墨烯(GO)进行微观调控处理得到少层GO。采用喷雾干燥再高温改性的方法制备LiFePO_4/石墨烯锂离子电池复合正极材料;GO还原后即可得到石墨烯,其优良的导电性可以提高LiFePO_4的电子传输能力。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试技术等方法对复合材料的结构、形貌及电化学性能进行表征。石墨烯的复合使材料颗粒间构建空间三维导电网络,提高了电解质/电极材料界面的电荷转移速率,改善了LiFePO_4的电化学性能。电化学测试结果表明,在0.1C时LiFePO_4的放电比容量为155mAh/g,LiFePO_4/石墨烯复合材料的放电比容量为164mAh/g;1C和2C倍率时,LiFePO_4/石墨烯复合材料的放电比容量分别为140,119mAh/g。  相似文献   

7.
利用简单易行的化学沉淀-回流法制备了Ni(OH)_2/还原氧化石墨烯(RGO)复合材料,研究了不同混合氨-碱沉淀剂对复合材料电化学性能的影响。采用XRD、拉曼光谱(Raman)和SEM表征Ni(OH)_2/RGO复合材料的微观结构和形貌。当以NH_3·H_2O-NaOH作为沉淀剂时,Ni(OH)_2/RGO复合材料中β-Ni(OH)_2纳米片均匀分散在石墨烯片层之间,形成相互插层结构。利用循环伏安(CV)、恒电流充放电(GCD)和电化学交流阻抗(EIS)测试了复合电极材料的电化学性能。研究结果表明:放电倍率为0.2C时,Ni(OH)_2/RGO复合电极材料的放电比容量达到344.8mAh/g,比β-Ni(OH)2的放电比容量高出约29%;5C时放电比容量为274.5mAh/g,经过50个循环,容量保持率为98.8%,呈现出良好的倍率性能和循环性能。  相似文献   

8.
利用天然鳞片石墨通过改进的Hummers法制备氧化石墨烯(GO),在碱性条件下通过超声波剥离、静电自组装、磁力搅拌和高温还原的方法合成了还原氧化石墨烯/硅(RGO/Si)复合材料。借助XRD、SEM、TEM、EDX能谱分析和比表面积分析等发现,Si颗粒均匀分布在RGO片层内。在室温下,以该复合材料作为锂离子电池负极,在不同电流密度下研究了其电化学性能。结果表明,RGO/Si复合材料(2∶1)首次循环的放电比容量为1 231 mAh/g,首次库仑效率高达90.9%,在20次循环后,可逆容量保持在452 mAh/g,库仑效率为99.2%。RGO/Si复合材料(1∶1)的RGO片层包覆Si颗粒最紧密,其复合结构最稳定,在高电流密度下容量保持率较高。  相似文献   

9.
以氯化亚铁、硫代硫酸钠和氧化石墨烯(GO)为原料, 采用水热法制备FeS2/还原氧化石墨烯(RGO)纳米复合材料, 并采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、激光粒度分布仪和差热分析仪(DTA)等对FeS2/RGO复合材料进行了表征。结果表明, 在水热反应过程中加入GO可以防止FeS2颗粒的团聚, 使FeS2形成疏松的球状颗粒。采用LiCl-KCl电解质, 在450℃以100mA/cm2电流密度放电时, 截止1.5 V时, FeS2/RGO比容量为314.9 mAh/g, 较FeS2高65.6 mAh/g; 采用LiF-LiCl-LiBr电解质, 在500℃以100 mA/cm2电流密度放电, 截止1.5 V时, FeS2/RGO放电比容量为302.3 mAh/g, 较FeS2高29.8 mAh/g。与FeS2相比, 加入石墨烯提高了正极材料的导电性, 单体电池在放电过程中极化电阻相对较小, 使得FeS2/RGO复合材料表现出较高的放电比容量。  相似文献   

10.
以改良Hummers法制备了氧化石墨烯(GO),通过水热以及热处理制备了MoS_2@GO复合材料,探讨了MoS_2与GO物质的量比对复合材料结构、电化学性能的影响。结果表明,当MoS2与GO的物质的量比为1∶1时,所得复合材料呈现三维絮状结构并具有良好的电化学性能。其作为锂离子电池负极材料,在0.1A/g电流密度下,50次循环后放电比容量仍有879mAh/g,容量基本没有衰减。在2A/g的高电流密度下还能保持530mAh/g,当电流密度从2A/g恢复到0.1A/g,循环容量能恢复到0.1A/g时的水平,表现出优异的倍率性能。  相似文献   

11.
杨绍斌  张琴  沈丁  董伟  刘超 《材料导报》2017,31(10):1-5
以钛酸丁酯为前驱物,无水乙醇为溶剂,采用溶胶-凝胶法和热处理法制备了钠离子电池TiO_2/还原氧化石墨烯复合负极材料(TiO_2/RGO),研究了溶胶-凝胶法过程中反应物钛酸丁酯滴加速率对TiO_2/RGO复合材料形貌结构及储钠性能的影响。结果表明,TiO_2/RGO复合材料由锐钛矿相TiO_2和还原氧化石墨烯组成,TiO_2富集在RGO片层边缘。电化学测试结果表明,随着滴加速率的增大,首次放电比容量和库伦效率呈现先增大后减小的趋势;当滴加速率为1.0mL/min时,TiO_2/RGO复合材料具有良好的储钠性能,在1C(1C=20mA·g~(-1))倍率下首次放电比容量和库伦效率分别为140.14mAh·g~(-1)和27.92%,具有良好的循环和倍率性能。  相似文献   

12.
采用溶胶-凝胶法制备了LiFePO4。研究了聚乙二醇对LiFePO4材料形貌和电化学性能的影响。结果表明,添加聚乙二醇制备的材料具有更小的粒径,更大的比表面积;该材料以0.2C、1C、5C、10C的倍率放电,首次放电比容量分别达到143.9mAh/g、133.4mAh/g、124.2mAh/g、112.7mAh/g,比没添加聚乙二醇制备的材料具有更好的倍率性能。  相似文献   

13.
用两种碳源制备高性能LiFePO4/C正极材料   总被引:6,自引:0,他引:6  
为了提高LiFePO4材料的电化学性能,以碳溶胶和葡萄糖两种物质为碳源、采用高温固相法制备了LiFePO4/C复合正极材料.通过XRD、TEM、恒电流充放电等方法研究了材料的结构与电化学性能.XRD结果表明,两种碳源的添加对LiFePO4的晶体结构没有影响.从TEM图上可观测到颗粒外部明显的碳包覆层.电化学性能测试表明,在同样倍率下,以两种碳源制备的LiFePO4/C材料放电比容量高于以单一碳源制备的LiFePO4/C,且表现出优良倍率性能和循环稳定性:在0.1C下的放电比容量达162mAh/g,1C下放电比容量为157mAh/g,循环20次后容量没有任何衰减.  相似文献   

14.
采用高温固相法制备钴酸锂(LiCoO2)正极材料,将碳纳米管(CNTs)、氧化石墨烯(GO)与LiCoO2超声分散,经喷雾干燥和高温还原后,氧化石墨烯被还原成石墨烯(GR),最终得到均匀分散的碳纳米管/石墨烯/钴酸锂(CNTs/GR/LiCoO2)复合正极材料.实验采用X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、透射电镜(TEM)以及电化学测试等方法,对材料的结构、形貌和电化学性能进行表征.实验结果表明,碳纳米管与石墨烯交替分散在LiCoO2颗粒表面,形成三维分层纳米级导电网络,能有效防止复合材料的团聚,与纯LiCoO2、GR/LiCoO2、CNTs/LiCoO2相比,CNTs/GR/LiCoO2复合材料表现出更优异的电化学性能,在0.5C时放电比容量为171.28 mAh/g,循环100次后放电比容量为154.50 mAh/g,容量保持率为90.24%,5C大倍率下放电比容量达到143.60 mAh/g.  相似文献   

15.
姚悦  王键  何健明  张宁 《功能材料》2023,(12):12142-12147
选择改进的Hummers法制备了氧化石墨烯(GO),将GO进行高温热还原处理,形成还原氧化石墨烯(RGO),再以油酸作为表面活性剂,通过球磨法与金属氧化物正极材料LiFePO4通过复合生成了LiFePO4/RGO正极材料。采用XRD、TEM和电化学性能测试等手段对复合材料进行了表征。结果表明,RGO的掺杂没有影响LiFePO4材料的晶体结构,没有产生新的产物,当RGO的掺杂量为6%(质量分数)时,复合材料中RGO和LiFePO4分散较为均匀,形貌结构较好。随着RGO掺杂量的增加,复合材料的首次充放电比容量均先增大后减小,当RGO的掺杂量为6%(质量分数)时,复合材料的首次放电、充电比容量均达到最大值,分别为137.5和139.5 mAh/g。在0.2 C的倍率下循环30次后,6%(质量分数) RGO掺杂的复合材料的放电比容量的保持率最高可达86.1%,电荷转移电阻最小为512.70Ω,电化学性能最佳。因此可知,RGO的最佳掺杂量为6%(质量分数)。  相似文献   

16.
由于钠离子半径比锂离子半径大70%,使得钠离子在石墨电极材料中脱嵌较困难,需要对石墨负极材料进行改性。以天然石墨为原料,采用Hummers法制备氧化石墨烯;在此基础上以钛酸丁酯为原料,采用溶胶-凝胶法制备了TiO_2前驱体/氧化石墨烯(TiO_2/GO)复合材料,通过热处理获得锐钛矿型TiO_2/还原氧化石墨烯(TiO_2/RGO)复合材料。电化学测试结果表明:TiO_2含量为15wt%的TiO_2/RGO复合材料在电流密度为20mA·g~(-1)下的首次放电比容量为74.08mAh·g~(-1),随着循环次数的增加,放电比容量逐渐增大,循环50次后达109.10mAh·g~(-1);充放电效率也呈现出逐渐增大的趋势,循环50次后达65.59%。而纯还原氧化石墨烯首次放电比容量为41.43mAh·g~(-1),循环50次后仅为20.47mAh·g~(-1)。  相似文献   

17.
利用改进的Hummers法制备氧化石墨烯(GO),以GO为碳源、Ni(NO_3)_2为镍源、尿素为沉淀剂,采用微波二甲基亚砜溶剂法一步成功合成α-Ni(OH)_2/还原氧化石墨烯(α-Ni(OH)_2/RGO)复合电极材料,研究了不同微波功率、不同GO与Ni(OH)_2质量比对复合材料性能的影响。采用X射线衍射和扫描电镜测试其结构、表面微观形貌;利用恒电流充放电技术对其电化学性能进行研究。结果表明:α-Ni(OH)_2在石墨烯片层上形核长大,当微波功率为600W,GO∶Ni(OH)_2=1∶6(质量比)时,0.2C放电比容量可以达到326.7mAh/g,从0.2C到5C,放电比容量仅下降了15.6%,显示了高的容量保持率和循环稳定性。  相似文献   

18.
钟伟攀  陆雷  杨晖 《功能材料》2012,43(11):1425-1430
采用共沉淀-高温固相烧结法,控制合成条件,以不同的沉淀剂(Na2CO3、NaOH)制备出正极材料。通过XRD、SEM及电池测试系统对不同沉淀剂制备的正极材料进行结构、形貌和电化学性能的表征,对比两者存在的优缺点。研究结果表明,以NaOH为沉淀剂制备的正极材料有更好的层状结构,形貌也更好,充放电性能和倍率性能也较好。其首次放电比容量达到了187.9mAh/g,最高可达196.2mAh/g,50次充放电循环后,容量保持率为81.6%;以Na2CO3为沉淀剂制备的正极材料的放电比容量较低,但容量保持率较高,为85.3%。  相似文献   

19.
以经活化处理的石墨烯(AG)为主体材料, 通过化学还原法制备了石墨烯负载硫的复合正极材料AG/S。SEM、EDX和TEM测试结果表明经活化处理后形成手风琴结构的AG, 有利于电解液的浸润; 活性物质硫均匀地负载在AG表面, 同时沉积在AG的层间。电化学测试表明: 在400 mA/g电流密度下, AG/S复合正极材料首次放电比容量为1452.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在909.7 mAh/g; 在1000 mA/g电流密度下, AG/S复合材料首次放电比容量为1309.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在717.1 mAh/g。AG/S复合正极材料的倍率性能、库仑效率和循环性能优异, 这得益于小尺寸的硫在材料中均匀分布, 活化石墨烯优良的导电性以及其结构对硫的固化作用。  相似文献   

20.
崔瑜  王艳芝  陈召凡 《无机材料学报》2015,30(11):1218-1222
以钛酸丁酯为TiO2前驱体, 通过水热法制得TiO2/石墨烯复合物。使用X射线衍射(XRD)、热重分析(TG)、透射电镜(TEM)、扫描电镜(SEM)和电化学充放电等手段对材料进行了表征和分析。结果表明: TiO2颗粒均匀地分散在石墨烯的表面, 复合物中石墨烯的含量为24.67%。当该材料用作锂离子电池负极材料时, 在2C的放电倍率下, 首次放电容量为384.35 mAh/g, 循环100次后的放电容量为130.26 mAh/g, 是纯TiO2电极放电容量的2.93倍。与纯TiO2电极相比, TiO2/石墨烯复合物的电荷转移电阻较低。TiO2/石墨烯复合物具有较好的倍率性能和较高的电化学反应活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号