首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Composite nanofiber meshes of well‐aligned polyacrylonitrile (PAN)/polyvinylpyrrolidone (PVP) nanofibers containing multiwalled carbon nanotubes (MWCNTs) were successfully fabricated by a magnetic‐field‐assisted electrospinning (MFAES) technology, which was confirmed to be a favorable method for preparation of aligned composite nanofibers in this article. The MFAES experiments showed that the diameters of composite nanofibers decreased first and then increased with the increase of voltage and MWCNTs content. With the increase of voltage, the degree of alignment of the composite nanofibers decreased, whereas it increased with increasing MWCNTs concentration. Transmission electron microscopy observation showed that MWCNTs were parallel and oriented along the axes of the nanofibers under the low concentration. A maximum enhancement of 178% in tensile strength was manifested by adding 2 wt % MWCNTs in well‐aligned composite nanofibers. In addition, the storage modulus of PAN/PVP/MWCNTs composite nanofibers was significantly higher than that of the PAN/PVP nanofibers. Besides, due to the highly ordered alignment structure, the composite nanofiber meshes showed large anisotropic surface resistance, that is, the surface resistance of the composite nanofiber films along the fiber axis was about 10 times smaller than that perpendicular to the axis direction. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41995.  相似文献   

2.
Barium titanate nanofibers were uniaxially aligned by electrospinning onto a rotating copper wire drum and alignment was maintained during calcination of the fibers. Two methods for maintaining alignment during calcination were tested, by either using carbon tape or a peeling off method to remove the aligned fibers from the mandrel followed by calcination. The carbon tape removal method led to the formation of shorter aligned nanowires while the peeling off method resulted in longer nanofibers. Additionally, the effects of calcination temperature and time on crystal structure were also examined. The degree of tetragonality in the barium titanate nanofibers increased at higher calcination temperatures and times. Piezoelectricity was confirmed in the nanofibers calcined using piezoeresponse force microscopy, yielding a d33 value of 15.5 pm/V. Using the methods presented here, large quantities of aligned piezoelectric barium titanate and other ceramic fibers or wires can be produced to fulfill their demand in novel microelectronics.  相似文献   

3.
We have successfully synthesized polyacrylonitrile (PAN) nanofibers impregnated with Ag nanoparticles by electrospinning method at room temperature. Briefly, the PAN‐Ag composite nanofibers were prepared by electrospinning PAN (10% w/v) in dimethyl formamide (DMF) solvent containing silver nitrate (AgNO3) in the amounts of 8% by weight of PAN. The silver ions were reduced into silver particles in three different methods i.e., by refluxing the solution before electrospinning, treating with sodium borohydride (NaBH4), as reducing agent, and heating the prepared composite nanofibers at 160°C. The prepared PAN nanofibers functionalized with Ag nanoparticles were characterized by field emission scanning electron microscopy (FESEM), SEM elemental detection X‐ray analysis (SEM‐EDAX), transmission electron microscopy (TEM), and ultraviolet‐visible spectroscopy (UV‐VIS) analytical techniques. UV‐VIS spectra analysis showed distinct absorption band at 410 nm, suggesting the formation of Ag nanoparticles. TEM micrographs confirmed homogeneous dispersion of Ag nanoparticles on the surface of PAN nanofibers, and particle diameter was found to be 5–15 nm. It was found that all the three electrospun PAN‐Ag composite nanofibers showed strong antibacterial activity toward both gram positive and gram negative bacteria. However, the antibacterial activity of PAN‐Ag composite nanofibers membrane prepared by refluxed method was most prominent against S. aureus bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
A simple and nonconventional electrospinning technique was employed for producing aligned polyacrylonitrile (PAN) nanofibers. A thermal zone was placed between syringe needles and collector in the electrospinning set up to obtain aligned and heat treated nanofibers. Suitable temperatures for heat treat process of PAN nanofibers was determined using differential scanning spectroscopy (DSC) technique. The influence of treatment temperature was investigated on morphology, internal structure and mechanical properties of collected PAN nanofibers. The average fiber diameter measured from SEM images exhibited decreasing trend at higher temperatures. FTIR spectra indicated no considerable difference between chemical structure of untreated and treated PAN nanofibers. Crystallization degree of PAN nanofibers calculated from WAXD patterns showed relatively low change with treatment temperature. Tenacity values of nanofiber bundles increased with increasing temperature while the extension values had an inverse trend. However, the modulus did not show a regular manner, but treated nanofibers had more modulus than untreated ones. The stress and modulus of PAN nanofibers increased to 112.9 MPa and 7.25 GPa at 270°C, respectively. Nanofibers treated at the highest temperature had the largest amount of crystallinity and strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Electrospun nanofibers have large surface area, high porosity, and controllable orientation while conventional microfibers have appropriate mechanical properties such as stiffness, strength, and elasticity. Therefore, the combination of nanofibers and microfibers can provide building elements to engineer biomimetic scaffolds for tissue engineering. In this study, a core–shell structured fibrous structure with controllable surface topography is created by electrospinning polycaprolactone (PCL) nanofibers onto polyglycolic acid (PGA) microfibers. The surface morphology, surface wettability, and mechanical properties of the resultant core–shell structure are characterized. FE‐SEM images reveal that the orientation of PCL nanofibers on the yarn surface can be tuned by a fiber collector and rotating disks. Benefiting from the introduction of a shell of aligned PCL nanofibers on the core of PGA yarn, the uniaxially aligned PCL nanofiber–covered yarns (A‐PCLs) exhibit higher hydrophilicity, porosity, and mechanical properties than the core PGA yarns. Moreover, A‐PCLs promote the adhesion and proliferation of BALB/3T3 (mouse embryonic fibroblast cell line), and guide cell growth along the biotopographic cues of the PCL nanofibers with controllable alignment. The developed core–shell yarn having both the desired surface topography of PCL nanofibers and mechanical properties of PGA microfibers demonstrates great potential in constructing various tissue scaffolds.  相似文献   

6.
Graphitic carbon nanofibers (GCNFs) with diameters of approximately 300 nm were developed using bundles of aligned electrospun polyacrylonitrile (PAN) nanofibers containing phosphoric acid (PA) as the innovative precursors through thermal treatments of stabilization, carbonization, and graphitization. The morphological, structural, and mechanical properties of GCNFs were systematically characterized and/or evaluated. The GCNFs made from the electrospun PAN precursor nanofibers containing 1.5 wt.% of PA exhibited mechanical strength that was 62.3% higher than that of the GCNFs made from the precursor nanofibers without PA. The molecules of PA in the electrospun PAN precursor nanofibers initiated the cyclization and induced the aromatization during stabilization, as indicated by the FT-IR and TGA results. The stabilized PAN nanofibers possessed regularly oriented ladder structures, which facilitated the further formation of ordered graphitic structures in GCNFs during carbonization and graphitization, as indicated by the TEM, XRD, and Raman results.  相似文献   

7.
Magnetic‐field‐assisted electrospinning (MFAES) is a simple and effective method to align polymer nanofibers. In this method, further research is needed to identify alignment mechanism. Hence, this article includes statistical analysis of affecting factors to investigate alignment mechanism in MFAES. Tip to target distance, magnets distance, voltage, and collection time, which are recognized as the most effective factors on nanofibers alignment, were applied in design of experiments. Central composite method was applied to get required experiments with designed expert 8 software. A response surface was proposed with regression coefficient of 97%. Then, the common physics concepts and statistical results were used to discuss the affecting mechanism of the electric and magnetic fields on the electrospinnig jet and the nanofibers alignment. Field emission scanning electron microscopy images were used to characterize the nanofibers alignment and calculate overall alignment percentage using a proposed statistical combinatorial weighted percentage formula. MFAES method, used in this research, achieved 95.3% polyacrylonitrile‐aligned nanofibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41179.  相似文献   

8.
The effects of alignment of polyacrylonitrile (PAN) nanofibers and a two‐step drawing process on the mechanical properties of the fibers were evaluated in the current study. The alignment was achieved using a high‐speed collector in electrospinning synthesis of the nanofibers. Under optimal two‐step drawing conditions (e.g., hot‐water and hot‐air stretching), the PAN nanofiber felts exhibited large improvements in both alignment and molecular chain‐orientation. Large increase in crystallinity, crystallite size, and molecular chain orientation were observed with increasing draw ratio. Optimally, stretched PAN‐based nanofibers exhibited 5.3 times higher tensile strength and 6.7 times higher tensile modulus than those of the pristine one. In addition, bulk density of the drawn PAN nanofibers increased from 0.19 to 0.33 g/cm3. Our results show that fully extended and oriented polymer chains are critical in achieving the highest mechanical properties of the electrospun PAN nanofibers. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43945.  相似文献   

9.
Electrospinning has been extensively explored as a simple and versatile method for drawing fibers. The nanofibers are usually collected as nonwoven mats. The results presented in this article show that the electrospun nanofibers can be uniaxially aligned by introducing two nonconductive ferrite magnets collector, and polymer chains parallel to the fiber axis for the aligned nanofibers. The alignment of the nanofibers was characterized by use of digital cameras and field emission scanning electron microscopy. Alignment on the molecular level was investigated by polarized Fourier transform infrared spectroscopy, polarized Raman spectroscopy, and wide‐angle X‐ray diffraction. Such uniaxially oriented nanofibers exhibit a variety of potential applications in the areas of biomaterials, microelectronics, and photonics. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
This article reports a new needleless emulsion electrospinning method for scale‐up fabrication of ultrathin core–shell polyacrylonitrile (PAN)/isophorone diisocyanate (IPDI) fibers. These core–shell fibers can be incorporated at the interfaces of polymer composites for interfacial toughening and self‐repairing due to polymerization of IPDI triggered by environmental moisture. The electrospinnable PAN/IPDI emulsion was prepared by blending PAN/N,N‐dimethylformamide and IPDI/N,N‐dimethylformamide solutions (with the solute mass fraction of 1 : 1). The electrospinning setup consisted of a pair of aligned metal wires as spinneret (positive electrode) to infuse the PAN/IPDI emulsion and a rotary metal disk as fiber collector (negative electrode). The formed ultrathin core–shell PAN/IPDI fibers were collected with the diameter in the range from 300 nm to 3 μm depending on the solution concentration and process parameters. Optical microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the core–shell nanostructures. Dependencies of the fiber diameter on the PAN/IPDI concentration, wire spacing, and wire diameter were examined. Results show that needleless emulsion electrospinning provides a feasible low‐cost manufacturing technique for scalable, continuous fabrication of core–shell nanofibers for potential applications in self‐repairing composites, drug delivery, etc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40896.  相似文献   

11.
Needleless alternating current (AC)‐electrospinning is capable of achieving high nanofiber generation rates while adding more flexibility to the process development when compared to common direct current (DC)‐electrospinning. However, AC‐electrospinning process may produce very different results than DC‐electrospinning when using the same precursors. This study demonstrated that stable AC‐electrospinning of uniform and mechanically strong polyacrylonitrile (PAN) nanofibrous meshes can be achieved at 30 ± 5 kV rms voltage when 0.75–6.0 wt % of nanocrystalline cellulose‐II with respect to PAN is added to a typical PAN precursor solution. Efficient generation (up to 2 g/h rate or 0.7 g h?1 cm?2 mass flux) of nanofibers with 250–500 nm fiber diameters has been observed when using flat fiber‐generating electrodes with diameters up to 25 mm. Depending on the amount of nanocellulose, nanofibrous nanocellulose/PAN meshes revealed large variations in tensile modulus (90–273 MPa) and yield strength (1.0–2.5 MPa), whereas the fiber diameter, air permeability, air resistance, mesh porosity, and water absorption were less affected. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45772.  相似文献   

12.
Carbon nanotubes (CNTs) are thought to be perfect enhancive materials for composites. Multi‐wall carbon nanotubes were directly electrospun into polyacrylonitrile (PAN) nanofibers via both traditional electrospinning and vibration‐electrospinning. The fibers obtained were examined by scanning electron microscopy and X‐ray diffraction. CNTs were aggregated heavily in the fibers obtained by traditional electrospinning while CNTs were well distributed and aligned in PAN fibers obtained by vibration‐electrospinning. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
M. Naraghi 《Polymer》2011,52(7):1612-354
Electrospinning of polymeric solutions entails high jet velocities which could orient the polymer molecules along the jet direction. Polarized Fourier Transform IR spectroscopy (FTIR), Wide angle X-ray diffraction (WAXD) and Microelectromechanical System (MEMS)-based single nanofiber mechanical property experiments were employed to investigate the molecular orientation and crystallinity in electrospun polyacrylonitrile (PAN) nanofibers produced under different electrospinning conditions with diameters mainly varying between 100 and 300 nm. FTIR measurements with nanofibers fabricated at three different electrospinning distances, but under the same electric field intensity, revealed an enhanced molecular orientation only for the longest electrospinning distance. At long electrospinning distances the fiber solvent content is substantially reduced resulting in high viscosity, and, therefore, sustained shear stresses, which, in turn, allows for permanent molecular orientation. The orientation factors from polarized FTIR were in good agreement with the mechanical property trends obtained from individual nanofibers, where high elastic moduli and yield strengths were recorded from nanofibers with diameters smaller than 300 nm, which were fabricated at the longest electrospinning distance. WAXD studies on bundles of aligned PAN nanofibers showed small crystallinity which did not follow the trends in the mechanical properties and varied rather non-monotonically from 7%, for fibers spun at the shortest distance, to 17% for fibers spun at the longest distance used in this study.  相似文献   

14.
The continuous highly aligned hybrid carbon nanofibers (CNFs) with different content of acid-oxidized multi-walled carbon nanotubes (MWCNTs) were fabricated through electrospinning of polyacrylonitrile (PAN) followed by a series of heat treatments under tensile force. The effects of MWCNTs on the micro-morphology, the degree of orientation and ordered crystalline structure of the resulting nanofibers were analyzed quantitatively by diversified structural characterization techniques. The orientation of PAN molecule chains and the graphitization degree in carbonized nanofibers were distinctly improved through the addition of MWCNTs. The electrical conductivity of the hybrid CNFs with 3 wt% MWCNTs reached 26 S/cm along the fiber direction due to the ordered alignment of MWCNTs and nanofibers. The reinforcing effect of hybrid CNFs in epoxy composites was also revealed. An enhancement of 46.3% in Young’s modulus of epoxy composites was manifested by adding 5 wt% hybrid CNFs mentioned above. At the same time, the storage modulus of hybrid CNF/epoxy composites was significantly higher than that of pristine epoxy and CNF/epoxy composites not containing MWCNTs, and the performance gap became greater under the high temperature regions. It is believed that such a continuous hybrid CNF can be used as effective multifunctional reinforcement in polymer matrix composites.  相似文献   

15.
A high‐performance of uniaxial alignment of electrospun nanofibers was realized by introducing an inclined gap into dual collectors that consisted of two conductive strips. Because the two strips that were configured horizontally and vertically had a height difference from the inclined gap, the electrospun nanofibers were sequentially suspended across the edges of strips in a well‐aligned and regularly distributed form. Some parameters, such as concentration of solution, applied voltage, and spinning distance were considered for the successful suspension and formation of the aligned electrospun fibers. The method could improve the properties of nanofiber alignment and allow for easy transfer onto other solid substrates or devices. The alignment technique used polycaprolactone, which resulted in continuous and well‐aligned nanofibers with diameters ranging from 500 to 700 nm. Furthermore, it is suggested that repetitive transfer be used to achieve a higher density of aligned nanofiber arrays. This would enlarge the applicability of nanofibers, especially for the tissue engineering field. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Continuous bundles of aligned and stretched electrospun polyacrylonitrile (PAN) precursor nanofibers were prepared in an attempt to develop carbon nanofibers with superior strength. The bundles were prepared through collection of electrospun nanofibers with a flowing water bath followed by stretching in water at 97 °C. Their morphologies, structures, and thermo-chemical properties were characterized by SEM, XRD, and DSC. The shrinkages in boiling water and the amounts of residual solvent were also measured. The results indicated that, the nanofibers in the bundles were uniform with smooth surfaces and small variations in diameters; after stretching the bundles by 4 times, the average fiber diameter was reduced to 56%, while the crystallinity of PAN was improved by 72%. The post-spinning stretching process facilitated the stabilization of PAN, as evidenced by the shift of the cyclization reaction to a lower temperature with smaller activation energy and larger enthalpy change. In comparison with the commonly adopted nanofiber collection method of a rotating drum, the flowing water bath method results in higher degree of uni-axial alignment and more desired structures of nanofibers.  相似文献   

17.
Continuous poly(amide‐imide) nanofibers were fabricated using a novel electrospinning method with rotating and re‐collecting cylindrical collectors. The nanofilaments were modified using various post‐treatments, i.e. glycerol treatment and thermal imidization under tension, for possible application as high‐performance reinforcements. Morphological and mechanical properties of continuous poly(amide‐imide) nanofibers prepared by the electrospinning process and various post‐treatments were measured. Severe adhesion between individual nanofibers within fiber bundles was inhibited through surface treatment of the electrospun nanofiber bundles by spraying with glycerol. The morphological and mechanical properties of the continuous poly(amide‐imide) nanofibers and thermal stability were improved using thermal imidization at high temperature under tension. The morphological and mechanical properties of the continuous electrospun nanofibers were improved significantly by post‐treatments after electrospinning because uniform and complete thermal imidization occurred through the core region of the nanofibers. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
The effect of NaSCN salt on the spinnability of polyacrylonitrile (PAN) solutions, its resulting morphology, mechanical property, and the flame resistance of the resulting electrospun nanofibers were studied. The intent was to develop a method to produce nanosized carbon fiber precursors with good properties. Electrospun PAN nanofibers from 9.7–9.9 wt% PAN/sodiumthiocyanate (NaSCN) (aq)/Dimethylformamide (DMF) solutions with 1.0–2.9 wt% NaSCN (aq), and 10–15 wt% PAN/DMF solutions without salt exhibited good spinnability and morphology with no beading in the range of applied voltage (18–20 kV) and take‐up velocity (9.8–12.3 m/s). The relatively high take‐up velocity produced good yarn alignment. The diameter distributions of the PAN nanofibers containing the NaSCN salt were narrower than those of the PAN/DMF nanofibers without the salt. It was determined that the maximum content of salt for production of electrospun PAN nanofibers with good morphology was below 3.8 wt% (40 wt% based on PAN). The salt concentration can positively influence on the narrow diameter distributions of the resulting electrospun fibers. Also, it could be confirmed that the salt effect on mechanical property and flame resistance of electrospun PAN nanofibers. In particular, the elongation of the PAN nanofiber with 2.9 wt% NaSCN (aq) was significantly increased as much as 186% compared with that of 10 wt% PAN nanofiber without the salt. The flame resistance and mechanical properties of the stabilized PAN nanofibers with NaSCN (aq) increased after oxidization process. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

19.
ZnS nanoparticles were prepared on the surface of polyacrylonitrile (PAN) and methyl methacrylate (MMA)/butyl methacrylate (BMA)/acrylic acid (AA) copolymer nanofibers. The MMA–BMA–AA copolymer was synthesized by bulk radical polymerization using 2,2′‐azobisisobutyronitrile as the initiator. The PAN and MMA–BMA–AA copolymer nanofibers were prepared by electrospinning. Zinc ions were introduced onto the surface of the nanofibers by coordination with the carboxyl of AA. Then, sulfide ions were added to react with zinc ions to form ZnS nanoparticles. The average diameter of the nanofibers was about 300 nm, and the diameter of the ZnS nanoparticles was about 10 nm. The band position of the photoluminescence spectrum of the ZnS/PAN and MMA–BMA–AA nanocomposites had an 80‐nm blueshift in comparison with that of the corresponding bulk ZnS sample. The ZnS/PAN and MMA–BMA–AA nanocomposites had high photocatalytic activity for the degradation of phenol under ultraviolet irradiation; the photocatalytic activity changed indistinctively after it was used repeatedly (6 times). The nanofibers of PAN and MMA–BMA–AA not only dispersed but also stabilized the ZnS nanoparticles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Xuefen Wang  Kai Zhang  Hao Yu  Yanmo Chen 《Polymer》2008,49(11):2755-2761
Continuous polymer nanofiber yarns were manufactured by self-bundling electrospinning method. Compared with typical electrospinning setup, the special difference in this method was that a grounded needle tip was used to induce the self-bundling of polymer nanofibers at the beginning of electrospinning process. Four kinds of polymer self-bundling yarns, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polyacrylonitrile (PAN), poly(l-lactic acid) (PLLA) and poly(m-phenylene isophthalamide) (PMIA), were prepared successfully by using this self-bundling electrospinning method. Good alignment of polymer nanofibers in self-bundled yarns was confirmed by SEM observation. It was found out that the conductivity of the polymer solution was crucial to achieve stably continuous self-bundled fiber yarns. A possible mechanism for the self-bundling formation of align nanofiber yarn was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号