首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究   总被引:1,自引:2,他引:1       下载免费PDF全文
方书起  石崇  李攀  白净  常春 《化工学报》2020,71(4):1637-1645
选取木屑和花生壳作为原料进行生物质热解,研究有机产物分布,催化剂使用Fe、Zn两种金属元素进行改性。通过X射线衍射(XRD)、扫描电镜(SEM)、傅里叶红外(FT-IR)、比表面积测试(BET)对Fe-Zn改性的ZSM-5进行分析。使用闪速裂解-气质联用仪(PY-GC/MS)对原料进行热解,探究生物质催化热解的产物分布变化。催化剂的使用使得芳烃类产物产率获得较大提升,在木屑热解中,Fe负载的分子筛催化获得了酚类的最高产率,比ZSM-5催化热解产率提升18.30%。金属改性催化剂在花生壳热解中,大幅提升了芳烃类产物产率,其中Zn负载催化剂芳烃类产物产率最高,Zn负载催化热解比直接热解的酚类产率降低了18.92%。Zn负载催化获得了最低的酮类产率,与直接热解相比酮类产率降低19.74%,显示出较强的脱羟基效果。此外Zn负载催化和Fe-Zn双金属负载催化在花生壳热解中都大幅降低了酸类产物产率,与直接热解相比酸类产率分别降低了30.46%、36.71%。  相似文献   

2.
生物质快速热解制生物油是解决能源短缺的有效途径,通过催化剂的加入可使生物油成分定向转化为系列平台化合物,有助于其高效利用。以松木屑为原料,对其进行热重分析并研究了其热解行为。以NiO/HZSM-5为催化剂,在微波功率为800 W,热解时间为12 min条件下对松木屑快速热解,并对产物进行了计重分析和成分分析。结果表明,NiO/HZSM-5的加入能使生物油产量略有提高。对液相产物的GC-MS分析表明,所用催化剂对松木屑热解具有较好的脱氧效果,有利于平台化合物的定向转化,NiO/HZSM-5在微波加热条件下对生物油的产量及提质具有有效作用。  相似文献   

3.
间歇式给料的生物质快速热解制油的实验研究   总被引:1,自引:0,他引:1  
齐国利  董芃  翟明  王丽 《现代化工》2006,26(8):37-39
设计了间歇式给料的鼓泡流化床反应器,对生物质在不同的反应温度、不同的流化气速以及不同的床层高度等条件下的生物质热解进行了研究。结果表明热解温度是生物质产油率的主要影响因素,流化气流速和床层高度对产油率也有一定的影响。在最佳的反应条件下,生物质油的产率可达65%,其主要组分为有机酸和呋喃。  相似文献   

4.
生物质快速热解与生物油精制研究进展   总被引:2,自引:1,他引:1  
本文综述了生物质快速热解与生物油精制工艺。阐述了快速热解的机理、工艺以及影响因素;介绍了生物油的组分与特性;概括了目前生物油精制的3种工艺:催化加氢、催化裂化以及乳化技术,评价了这3种工艺的机理、效果以及优缺点,并从3个方面预测了该课题未来的研究方向。  相似文献   

5.
通过表面响应法,以Box-Behnken试验原理,对生物质(玉米秸秆)的非催化热解进行三因素试验,其中生物油产率为响应值,温度、升温速率、氮气流速为自变量,确定最大生物油产率的工艺参数进行催化热解。以硅酸四乙酯为硅源,通过水热合成法合成了复合催化剂ZSM-5/SBA-15,并进行玉米秸秆的微波催化热解产物分析。通过XRD、SEM、TEM、NH3-TPD进行催化剂表征,得到复合催化剂不仅具有介孔催化剂SBA-15的性质,且兼备微孔催化剂ZSM-5的性质。通过GC-MS分析,复合催化剂ZSM-5/SBA-15的加入,相比非催化热解烃类收率(6.42%)和酚类收率(39.65%)都有所增加。  相似文献   

6.
魏小翠  曹阳  李进  代琪琪  汤宏彪 《精细化工》2020,37(10):2060-2068
以硅酸四乙酯为硅源,通过水热合成法合成了复合催化剂ZSM-5/SBA-15,采用XRD、SEM、TEM、NH3-TPD对其进行了表征。并将其用于生物质(玉米秸秆)的微波催化热解。通过表面响应法,根据Box-Behnken实验原理,对玉米秸秆的非催化热解进行三因素实验,以生物油产率为响应值,温度、升温速率、氮气流速为自变量,确定最大生物油产率的工艺参数。结果表明,得到的复合催化剂ZSM-5/SBA-15不仅具有介孔催化剂SBA-15的性质,还兼备微孔催化剂ZSM-5的性质,SBA-15的引入降低了复合催化剂ZSM-5/SBA-15的酸性,有利于促进活性中间体反应。复合催化剂ZSM-5/SBA-15的加入对生物油产率影响不大,但对生物油组分具有一定影响,生物油中烃类和酚类色谱含量(GC)分别达到了6.42%和39.65%,比非催化热解都有所增加。  相似文献   

7.
生物质快速热解制油试验及流程模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
使用自主研发的流化床热解反应器对生物质热解制油进行实验研究,通过对不同实验温度450、500、525、550、580、610℃下得到的目标产物进行分析,得到了反应温度对生物油产率的影响规律。实验表明:550℃时,最大液体产率为42.5%(质量);实验得到的不可冷凝气体的组分以CO、CO2、CH4和H2为主,气相产物产率约为37.7%(质量)。在实验基础上,利用Aspen Plus流程模拟软件,建立了生物质热解制油工艺模拟流程,模拟分析了热解温度对生物油产率的影响,结果表明该模型能准确模拟实际热解过程,具有较好的适用性和可靠性。  相似文献   

8.
生物热解油精制改性研究进展   总被引:9,自引:0,他引:9  
综述了近年来生物热解油的精制改性技术(如催化加氢、催化裂解、添加溶剂、乳化及催化酯化等),并对其优缺点进行了分析比较.根据生物油中化学组成的特点,指出将活泼极性基团转化为较稳定的非极性基团(如将羧基转化为酯基,将醛基转化为缩醛),是生物油精制改性十分有效的方法.  相似文献   

9.
生物质快速热解技术现状   总被引:20,自引:6,他引:14  
生物质能源是可再生能源的重要组成部分,有丰富的资源和低污染的特点,它的开发与利用已成为21世纪研究的重要课题。本文概述了生物质转化利用的方法,并重点阐述了生物质热化学转化法中的快速热解技术,同时综述了国内外快速热解反应器的现状,以及其产物———生物油的收集与特征分析,并提出了我国在快速热解研究方面应采取的有关措施。  相似文献   

10.
生物质能源作为可再生能源的重要组成部分,其综合高效利用在能源替代与补充、保护生态环境等方面具有重要的战略意义。生物油是生物质通过热裂解技术获得的液体产物,具有能量密度较高、环境友好、可再生及可直接输送等优点,可替代传统化石燃料推广使用,解决日益严重的能源紧缺与环境污染等问题。生物质热解制油技术的开发与利用,已成为新世纪可持续能源研究领域的重要课题之一。总结了近年来生物质热解制油技术的主要研究进展,重点关注热解反应器、催化热解技术与生物油的提质利用方面的研究,介绍了碱金属、氧化物和分子筛3种生物质热解催化剂,以及乳化、催化加氢、催化裂解、催化酯化和重整制氢5种生物质提质方法,最后对生物质热解技术的现状及发展趋势进行了总结和概括。  相似文献   

11.
目前生物质快速热解高温热解气主要利用间壁式冷却器进行冷凝,容易造成冷却管道的结焦堵塞问题,本试验根据流化床稀相输送特点、生物质的热解特性以及生物质油的冷凝收集特点,设计了生物质快速热解反应装置,改进生物质物快速冷凝系统,以稻壳为原料进行快速热解制取生物质油的试验研究,分别考察单因素反应温度、流化气量以及进料速度对生物质油产率的影响。试验表明:稻壳热解气能够快速顺利地得到冷凝,反应系统能够连续顺利运行,随着反应温度、流化气量、进料速度的增大,生物质油的产率都呈现先增大后减小的趋势。另外对产出的生物质油用气质联用设备进行了成分分析,得出了生物质油的主要成分,其中酸类、酮类、脂类以及酚类的含量相对较高。  相似文献   

12.
生物质热解技术制备生物油研究现状及展望   总被引:1,自引:0,他引:1  
徐国锋 《云南化工》2019,(4):148-149
生物质能源作为可再生能源的重要组成部分,其综合高效利用在能源替代与补充、保护生态环境等方面具有重要的战略意义。该技术很大程度上缓解当今社会的能源危机以及环境污染,是人类开发可再生资源的一种非常有效的途径。  相似文献   

13.
生物质热解液化制备生物油技术研究进展   总被引:10,自引:4,他引:6  
介绍了国内外生物质热解液化工艺、主要反应器及其应用现状;简述了生物质催化热解、生物质与煤共热解液化、微波生物质热解、热等离子体生物质热解几种新型热解工艺;并对目前生物质热解动力学研究进行了总结;对未来生物质热解液化技术的研究进行了展望。  相似文献   

14.
杉木屑真空热解制备生物油的实验研究   总被引:1,自引:0,他引:1  
以杉木屑为原料,进行了真空热解制备生物油的实验研究. 考察了体系压力、热解终温、终温保持时间及升温速率等热解参数对生物油产率、生物油组分及其相对含量的影响. 结果表明,热解终温为500℃、体系压力为20 kPa、热解终温保持时间为60 min、升温速率为60℃/min的条件有利于杉木屑真空热解制备生物油的生产,其产率达67%以上. 真空热解过程中,慢速热解可得到较高的生物油产率.  相似文献   

15.
方书起  蒋璐瑶  李攀  白净  常春 《现代化工》2020,(4):41-45+50
总结了常见的生物质预处理方法,分析了不同催化剂的添加对生物油特性的影响,最后讨论将生物质预处理和催化热解联合作用对热解过程及产物的影响。认为合理的生物质预处理方法能改善生物油的品质,应结合生物质原料特性"因材施教";同时应深入探究催化剂在热解过程中的作用机理,从而选择最佳的预处理方法和催化剂进行联合热解,达到优化生物油特性的目的。  相似文献   

16.
生物质热解制备高品质生物油研究进展   总被引:1,自引:0,他引:1  
生物质热解制备生物油是能源富集的有效途径,是实现碳闭路循环的重要方式,作为一种环境友好型技术受到广泛关注和研究。然而,生物质热解反应过程复杂,生成的生物油热值低、含氧量高及强酸性等特点,制约了生物油的分离提纯、制备合成气以及燃烧等方面的应用,生物油品质的提升迫在眉睫。本文从生物质三组分、原料预处理、反应参数、催化剂、反应器等方面综述了影响生物油品质的主要因素,分析了生物油的特点,不同预处理下生物质特性的变化与生物油的关系,催化剂参与的热解行为对提升生物油品质的导向作用以及常用生物质热解反应器的特点,并对影响生物油品质的主要因素进行了总结。最后,针对影响制备高品质生物油的诸多因素提出建议,以期为制备高品质生物油提供参考和借鉴。  相似文献   

17.
郭凡  郑小勋  徐春丽 《当代化工》2022,51(3):599-602
为了提高生物热解油的利用效率,使用固定床反应器开展了生物质热解油催化裂化反应实验,在加入催化剂的条件下,开展了不同类型催化剂、质量空速、反应温度、反应时间以及反应压力对催化裂化各产物产率的影响实验。结果表明:当催化剂类型为分子筛催化剂B、质量空速为3 h-1、反应温度为400℃、反应时间为4 h以及反应压力为2 MPa时,生物质热解油催化裂化处理效果最好,此时的产油率为45.36%、产炭率为28.94%、产气率为11.32%。生物质热解油催化裂化反应后油相的主要成分以单环芳烃和多环芳烃为主,气相组分中CO和CO2的含量较高,说明该处理工艺对生物质热解油中的含氧化合物达到了良好的催化裂化处理效果。  相似文献   

18.
本文综述了近年来国内外生物油的精制改性技术,如催化加氢、催化裂解、催化酯化、水蒸气重整和乳化,对其优缺点进行了分析,总结了生物油热解存在的主要问题,并提出了未来发展的方向。  相似文献   

19.
基于国家碳中和背景,生物质作为一种重要的可再生资源,其有效利用至关重要。生物质热解制油具有规模化潜力,成为目前生物质利用的主要方式。生物质热解技术按照液化方式不同分为直接液化和间接液化,但生物质直接液化所得生物油组分不稳定,间接液化所得生物油品质取决于反应器型式、反应温度及催化剂类型等,不同制备方法的生物油品质差别较大,生物油改性提质成为其实际应用的必要条件。归纳比较了生物质热解过程中提高生物油品质的催化剂类型,着重综述了原生物油分离为轻质组分和重质组分后分别改性提质的技术路线,可转化为燃气、燃油甚至化学品,实现生物油的高值化。针对轻质油组分的改性方法有水蒸气重整制氢、催化裂解、加氢脱氧、催化酯化等,催化剂类型以分子筛及贵金属为主;而重质油组分水含量低、黏性大,相关提质研究较少,目前报道以加氢、裂化、酯化、添加溶剂、气化为主。生物油提质改性方法中,催化剂、氢源、耗能是限制其规模化、工业化应用的主要原因,降低催化剂成本及提高催化剂寿命、减少氢源使用或利用低成本氢源、简化工艺及降低反应温度是生物油提质技术发展方向。  相似文献   

20.
稻壳快速热解制备生物油条件探索及产物分析   总被引:3,自引:0,他引:3  
以稻壳为原料,通过流化床快速热解的方式制备生物油。初步考察了螺旋进料速率对流化床反应参数的影响。当进料速率由 4 kg/h 提高至 5 kg/h 时,床层温度明显下降,床层压差明显增加,燃气流量也明显增加,表明热解产物更多地发生了二次裂解反应。采用GC-MS对快速热解所得生物油的组成进行分析,采用TG-DSC考察生物油的热稳定性,表明在250~400℃ 之间,出现较强的放热现象,缩聚现象严重,并对其重要的燃料性能进行表征,pH值2.33,水分 24.0%,热值 16.3 MJ/kg,密度 1.17 g/mL,黏度 45 mm2/s(30℃)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号