共查询到20条相似文献,搜索用时 15 毫秒
1.
Grafting of maleic anhydride (MA) onto fast-cure ethylene–propylene diene terpolymer rubber was studied. The effect of the amount of the MA, initiator (dicumyl peroxide), and electron donor (stearamide) on graft content are described. The potentiometric method and Fourier transform infrared spectroscopy are used to obtained the graft content. The stearamide suppresses the side reactions, such as crosslinking and chain scission. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1–5, 1998 相似文献
2.
The main objective of this study was to synthesize and characterize the properties of ethylene–propylene–diene terpolymer (EPDM)/clay nanocomposites. Pristine clay, sodium montmorillonite (Na+–MMT), was intercalated with hexadecyl ammonium ion to form modified organoclay (16Me–MMT) and the effect of intercalation toward the change in interlayer spacing of the silicate layers was studied by X‐ray diffraction, which showed that the increase in interlayer spacing in Na+–MMT by 0.61 nm is attributed to the intercalation of hexadecyl ammonium ion within the clay layers. In the case of EPDM/16Me–MMT nanocomposites, the basal reflection peak was shifted toward a higher angle. However, gallery height remained more or less the same for different EPDM nanocomposites with organoclay content up to 8 wt %. The nanostructure of EPDM/clay composites was characterized by transmission electron microscopy, which established the coexistence of intercalated and exfoliated clay layers with an average layer thickness in the nanometer range within the EPDM matrix. The significant improvement in thermal stability and mechanical properties reflects the high‐performance nanocomposite formation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2429–2436, 2004 相似文献
3.
The methods for sequencing ethylene–propylene copolymers (EPMs) by 13C‐NMR were extended to account for third monomer effects. The equations for calculating the ethylene content and monomer sequence distribution in EPMs were corrected for the presence of the third monomers 1,4 hexadiene, 2‐ethylidene‐5‐norbornene, and 5,8‐dicyclopentadiene that display resonances that overlap with the main chain EPM carbons. These corrections dramatically reduce the standard deviation among equivalent calculation methods. We also examined the effects of experimental conditions on the sequencing data including the choice of solvent, Cr3+ doping, and the presence of the nuclear Overhauser effect. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 523–530, 1999 相似文献
4.
In this study, the extrusion processing behaviors of polystyrene (PS), ethylene–propylene–diene terpolymer (EPDM), and their blend (PS/EPDM, 80/20) were studied by using a special ultrasonic oscillation extrusion system developed in our laboratory. The die pressure and volume flow rate were measured at different ultrasonic intensities and screw rotation speeds. The dependences on ultrasonic intensity of die pressure, volume flow rate, and apparent viscosity of polymers, as well as die swell at the same screw rotation speed were investigated. The effects of screw rotation speed on the processing behaviors of polymers and their blend at the same ultrasonic intensity were also studied. The experimental results showed that in the presence of ultrasonic irradiation, the processibilities of polymers and their blend were improved. Their possible mechanism is discussed in this article. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1856–1863, 2006 相似文献
5.
White rice husk ash (WRHA) and silica filled ethylene–propylene–diene terpolymer (EPDM) vulcanizates were prepared using a laboratory size two‐roll mill. Curing characteristics and physical properties of vulcanizates were studied with respect to the filler loading and filler type. Filler loading was varied from 0–50 parts per hundred resin (phr) at 10 phr intervals. Curing was carried out using a semi‐efficient vulcanization system in a Monsanto rheometer. Enhancement of the curing rate was observed with increasing WRHA loading, whereas the opposite trend was observed for silica‐filled vulcanizates. It was also indicated by the maximum torque and Mooney viscosity results that WRHA offers processing advantages over silica. Compared to the silica‐filled vulcanizates, the effect of filler loading on the physical properties of WRHA‐filled vulcanizates was not significant. According to these observations, WRHA could be used as a diluent filler for EPDM rubber, while silica can be used as a reinforcing filler. © 2001 Society of Chemical Industry 相似文献
6.
The structure development, rheological behavior, viscoelastic, and mechanical properties of dynamically cured blend based on the ethylene–propylene–diene terpolymer (EPDM) and polypropylene (PP) with a ratio of 60/40 by weight were studied. The variation of two‐phase morphology was observed and compared as the level of curing agent was increased. Meanwhile, as the level of curing agent increased, viscosity as a function of shear stress always increased at a shear stress range of 2.2 × 104 to 3.4 × 105 Pa at the temperature of 200°C, yet viscosity of the blend approached each other at high shear stress. Dynamic mechanical spectra at different temperatures show that dynamic modulus (E′) of the blend exhibits two drastic transitions corresponding to glass transition temperature (Tg) of EPDM and Tg of PP, respectively. In the blends Tgs of EPDM increase and Tgs of PP almost remain unchangeable with an increase in curing agent level. Tensile strength increased, yet elongation at break decreased as the level of curing agent is increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 357–362, 2004 相似文献
7.
High rubber styrene–EPDM–acrylonitrile (AES) was prepared by the graft copolymerization of styrene (St) and acrylonitrile (AN) onto ethylene–propylene–diene terpolymer (EPDM) in n‐heptane/toluene cosolvent using benzoyl peroxide as an initiator. The effects of reaction conditions, such as reaction temperature, initiator concentration, EPDM content, the solvent component, and reaction time, on the graft copolymerization are discussed. In addition, according to the research on mechanical properties of the SAN/AES blend, a remarkable toughening effect of AES on SAN resin was found. By means of scanning electron microscopy, the toughening mechanism is proposed to be crazing initiation from rubber particles and shear deformation of SAN matrix. Uniform dispersion of rubber particles, as shown by transmission electron microscopy, is attributed to the good compatibility of SAN and AES. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 416–423, 2004 相似文献
8.
9.
马来酸酐熔融接枝EPDM的研究 总被引:1,自引:1,他引:1
在哈克流变仪(Haake)中,研究了以2,5-二甲基-2,5-双(叔丁基过氧基)己烷(DHBP)为引发剂,在苯乙烯(St)存在下,马来酸酐(MAH)熔融接枝三元乙丙橡胶(EPDM)的过程。产物用傅立叶红外光谱仪进行了表征,并用化学滴定法测定了MAH的接枝率。讨论了St用量、MAH用量、DHBP用量、反应时间、反应温度和转速对接枝反应的影响。实验发现:MAH用量为2phr时,MAH的接枝率能达到1.53%;MAH的用量不宜过高;DHBP的用量不宜超过0.2phr。 相似文献
10.
Conducting composites were prepared by melt mixing of ethylene–propylene–diene terpolymer (EPDM) or styrene‐butadiene rubber (SBR) and 35 wt % of carbon black (CB). Stability of electrical properties of rubber/CB composites during cyclic thermal treatment was examined and electrical conductivity was measured in situ. Significant increase of the conductivity was observed already after the first heating–cooling cycle to 85°C for both composites. The increase of conductivity of EPDM/35% CB and SBR/35% CB composites continued when cyclic heating‐cooling was extended to 105°C and 125°C. This effect can be explained by reorganization of conducting paths during the thermal treatment to the more conducting network. EPDM/35% CB and SBR/35% CB composites exhibited very good stability of electrical conductivity during storage at ambient conditions. The electrical conductivity of fresh prepared EPDM/35% CB composite was 1.7 × 10−2 S cm−1, and slightly lower conductivity value 1.1 × 10−2 S cm−1 was measured for SBR/35% CB. The values did not significantly change after three years storage. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
11.
In this work, we attempted two different ways of processing to improve interfacial adhesion of polypropylene (PP) and ethylene–propylene–diene terpolymer (EPDM) by introducing maleic anhydride (MAH); In one way, the in situ grafting and dynamic vulcanization (ISGV) were performed simultaneously from PP and EPDM with MAH in the presence of dicumyl peroxide (DCP) in an intensive mixer. In another way, PP was first grafted with MAH and then the PP‐g‐MAH was blended with EPDM in the intensive mixer in the presence of DCP by the dynamic vulcanization (DV). It was found that the glass transition temperatures (Tgs) of both PP and EPDM phases were shifted to higher temperature as the EPDM content increased for the blends prepared by both IGSV and DV methods, mainly due to the crosslinking of EPDM. The higher Tgs and larger storage moduli were observed for the blends prepared by the ISGV method than those prepared by the DV method, while the morphology showed that the size reduction of dispersed particles in latter blends was larger than that of the former blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2777–2784, 2000 相似文献
12.
P. Sutanto F. Picchioni L. P. B. M. Janssen K. A. J. Dijkhuis W. K. Dierkes J. W. M. Noordermeer 《应用聚合物科学杂志》2006,102(6):5948-5957
Two types of ethylene–propylene–diene monomer (EPDM) rubbers, namely an efficient vulcanized (EV) and a semiefficient vulcanized (SEV), have been used to produce devulcanizates in a continuous setup. The devulcanizates are re‐cured using the same recipes as for the virgin rubber. The influence of mixing it with virgin rubber compound, the addition of extra sulfur, the operating devulcanization conditions, and the excess of devulcanizing agent on the mechanical properties (hardness, tensile strength, and compression set) of the reclaim rubbers are studied. Most of the reclaims produced show slightly inferior mechanical properties compared to the virgin rubber. Surface imperfection was observed on the devulcanizate with high devulcanizing agent content. Excellent mechanical properties (all above the standards) of the reclaim were found when the devulcanized profile material was used (EV‐EPDM) to replace the virgin one for application as a roofing sheet material (SEV‐EPDM). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5948–5957, 2006 相似文献
13.
K. A. Dubey Y. K. Bhardwaj Lata Panicker C. V. Chaudhari Virendra Kumar N. K. Goel S. Sabharwal 《应用聚合物科学杂志》2008,110(6):3552-3559
The miscibility of polychloroprene rubber (CR) and ethylene–propylene–diene terpolymer rubber (EPDM) was studied over the entire composition range. Different blend compositions of CR and EPDM were prepared by initially mixing on a two‐roll mill and subsequently irradiating to different gamma radiation doses. The blends were characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, density measurement, hardness measurement, and solvent permeability analysis. The compatibility of the blends was studied by measuring the glass transition temperature and heat capacity change of the blends. The immiscibility of blends was reflected by the presence of two glass transition temperatures; however, partial miscible domains were observed due to inter diffusion of phases. Permeation data fitted best with the Maxwell's model and indicated that in CR‐EPDM blends, EPDM exists as continuous phase with CR as dispersed phase for lower CR weight fractions and phase inversion occurred in 40–60% CR region. It was observed that CR improved oil resistance of EPDM; however, the effect was prominent for blends of >20% CR content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
Ljerka Kratofil Krehula Anita Ptiček Siročić Zvonimir Katančić Jasenka Jelenčić Vera Kovačević Zlata Hrnjak‐Murgić 《应用聚合物科学杂志》2012,126(4):1257-1266
The properties of styrene–acrylonitrile (SAN) and ethylene–propylene–diene (EPDM) blends containing different types of calcium carbonate filler were studied. The influence of mixing type process on the blend properties was also studied. Two different mixing processes were used. The first one includes mixing of all components together. The other process is a two‐step mixing procedure: masterbatch (MB; EPDM/SAN/filler blend) was prepared and then it was mixed with previously prepared polymer blend. Surface energy of samples was determined to predict the strength of interactions between polymer blend components and used fillers. The phase morphology of blends and their thermal and mechanical properties were studied. From the results, it can be concluded that the type of mixing process has a strong influence on the morphological, thermal, and mechanical properties of blends. The two‐step mixing process causes better dispersion of fillers in blends as well as better dispersion of EPDM in SAN matrix, and therefore, the finest morphology and improved properties are observed in blends with MB. It can be concluded that the type of mixing process and carefully chosen compatibilizer are the important factors for obtaining the improved compatibility of SAN/EPDM blends. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
15.
This paper presents the use of statistical analysis for studying the responses of two continuous devulcanization processes (of the EPDM roofing sheet and the EPDM profile) in the extruder. The response is represented by the reaction conversion, which is denoted as the relative decrease in crosslink density. Experimental design is considered as a useful tool when the kinetic data for the physical modeling are not available. The models derived show similar tendency of both processes with respect to the temperature and the screw speed. A difference is observed in their responses to the feed rate, which might be the consequence of their different devulcanization rates. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5028–5038, 2006 相似文献
16.
The graft copolymerizations of vinyltrimethoxysilane (VTMO) and styrene (St) onto ethylene–propylene–diene terpolymer (EPDM) were carried out with benzoyl peroxide (BPO) as an initiator in toluene. The effects of EPDM concentration, mole ratio of VTMO to St, reaction time, reaction temperature, and initiator concentration on the graft copolymerizations were examined. The synthesized VTMO–EPDM–St graft terpolymers (VES) were confirmed by infrared and 1H-NMR spectroscopies. The molecular weight, thermal stability, light resistance, and weatherability of the graft terpolymer were investigated by gel permeation chromatography, thermogravimetric analysis, and Fade-o-Meter. The number-average molecular weight was 109,000. It was found that the heat resistance and light resistance as well as weatherability of VES are considerably better than those of acrylonitrile–butadiene–styrene terpolymer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1345–1352, 1998 相似文献
17.
The phase morphology and mechanical properties of polypropylene (PP) composites containing ethylene–octene elastomer (EOR) and calcium carbonate (CaCO3) filler were investigated by comparing the toughening effect of unmodified EOR with EOR grafted with maleic anhydride (EOR–MA). EORs of various MA contents were prepared by free‐radical grafting of MA onto the EOR backbone using a reactive extrusion process. The composite morphology was directly explored by scanning electron microscopy technique and indirectly explored by differential scanning calorimetry and dynamic mechanical analysis. Separate dispersion of the elastomer and filler particles was achieved by using unmodified EOR. Modification of EOR by maleic anhydride grafting resulted in encapsulation of the filler particles. The mechanical properties of the composites were found to depend mainly on composite morphology and composition and, to a lesser degree, on maleic anhydride concentration. The results of this study showed that when composites contained an equal or higher amount of elastomer relative to filler, a composite with a separate dispersion structure was preferred. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3557–3562, 2003 相似文献
18.
The fire retardancy and flame‐retardant mechanism of expandable graphite (EG), organic montmorillonite (OMMT), and magnesium hydrate (MH) in ethylene‐propylene‐diene monomer/chloroprene rubber (EPDM/CR) foams were investigated. The results indicated that the combination of EG and OMMT remarkably improved the fire‐retardant property compared to the control samples, and better fireproof performance was achieved when MH was used as the third coretardant unit. The structure of the obtained EPDM/CR/OMMT composites was characterized by X‐ray diffraction, and the results showed that the composites had an intercalated nanostructure. The limiting oxygen index, vertical burning test, and cone calorimeter test results showed that the LOI values and UL‐94 rating increased while the second peak of the heat release rates (HRR) decreased within the EG/OMMT system. In particular, the second pHRR disappeared when the EG/OMMT/MH system was used as a flame retardant. Moreover, the results of thermogravimetric analysis showed that the combination of EG and OMMT reduced the thermal‐degradation rates and mass‐loss percentages. Furthermore, observation by scanning electron microscopy revealed that EG and OMMT left over after combustion formed a complete, compact, and rigid charred layer with a mosaic structure of expanded graphite embedded in cortical‐honeycomb layers of OMMT. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44929. 相似文献
19.
50 : 50 natural rubber (NR) and ethylene–propylene–diene monomer rubber (EPDM) blends were prepared with different contents of cashew nut shell liquid (CNSL), a natural product obtained from the shells of the cashew nut, as a plasticizer. For comparison, a commercial paraffin oil plasticizer was also used. The effect of plasticizer content on the cure characteristics, processability, and mechanical properties such as tensile strength, elongation at break, and Young's modulus before and after ageing was investigated. Scanning electron microscopy (SEM) was used to observe the blend morphology. The results indicated that the CNSL plasticizer resulted in lower Mooney viscosity and lower cure time of the 50 : 50 NR/EPDM blends. The incorporation of CNSL into 50 : 50 NR/EPDM blends improved tensile strength and elongation at break but decreased Young's modulus. On addition of CNSL the resistance of the blends to heat and weathering ageing improved. Scanning electron micrographs revealed that the morphology of the blend plasticized with CNSL is finer and more homogeneous compared with the blend plasticized with paraffin oil. Overall results indicate that CNSL can be used as a cheaper plasticizer to replace paraffin oil in NR/EPDM blends with improved processability and mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 相似文献
20.
In this study, ethylene–propylene–diene monomer (EPDM)/fibrillar silicate (FS) nanocomposites were successfully prepared by mechanically blending EPDM with FS, which was modified by silane coupling agent KH570 containing methacryloxy group. The effects of silane content and modified FS on the dispersion of FS and mechanical properties of the composites were investigated. The impact of water in FS on mechanical properties of the composites was also evaluated. The results showed that modified FS could be dissociated into nanofibers dispersing evenly in the EPDM matrix by increasing substantially the loading of silane through the mechanical blending. The optimum loading level of silane coupling agent was up to 24 phr/100 phr FS. Silane KH570 could improve the dispersion of FS and strengthen nanofibers–rubber interfacial adhesion even at the loading of as high as 50 phr FS, making FS to exhibit excellent reinforcement to EPDM. Too much FS could not be completely dissociated into nanofibers, slowing down further improvement. The EPDM/FS composites exhibited the similar stress–strain behavior and obvious mechanical anisotropy with short microfiber‐reinforced rubber composites. With the increase in silane coupling agent and modified FS, the number of nanofibers increased because of the exfoliation of FS microparticles; thus, the mechanical behaviors would become more obvious. It was suggested that the free water in FS should be removed before mechanically blending EPDM with FS because it obviously affected the tensile properties of the composites. Regardless of whether FS was dried or modified, the EPDM/FS composites changed little in tensile strength after soaked in hot water. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献