首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用熔融共混的方法制备了不同含量乙烯-辛烯共聚物(POE)的聚丙烯(PP)/乙烯-辛烯共聚物(POE)的共混物,研究了共混物的相形态和流变性能。用超临界二氧化碳(sc-CO_2)作为物理发泡剂,制备了PP/POE的共混物微孔发泡材料。研究了POE含量、温度和压力对微孔发泡材料泡孔的影响。结果表明,发泡材料平均泡孔尺寸在2~7μm之间,泡孔密度大于109 cm~(-3)。随着POE含量的增加、温度的升高,泡孔直径增大,泡孔密度降低;随着压力的增大,泡孔尺寸先增大后减小,泡孔密度逐渐增大。  相似文献   

2.
为了提高直链型聚丙烯(PP)的发泡性能,选用三烯丙基异氰脲酸酯(TAIC)为交联剂与PP共混热压成PP片材,用伽玛射线对PP片材进行辐射改性。采用超临界二氧化碳发泡技术对不同TAIC含量和不同吸收剂量PP片材进行发泡研究。结果表明,TAIC的质量分数为0.5%~2%时,PP较为适宜发泡。当TAIC质量分数为2%(PP2)时,辐射交联增加了PP2的交联度,降低了PP2的熔体流动速率,提高了PP2的发泡性能。PP2片材吸收剂量为10 k Gy时,交联最为充分,此时PP2发泡的性能较好(泡沫的泡孔尺寸分布均匀,体积膨胀率为15)。在相同的发泡条件下,辐照改性PP2的泡孔直径大小随吸收剂量的增加而增大。  相似文献   

3.
通过挤出制备了三种不同聚四氟乙烯微粉(PTFE)含量(1.0%、5.0%、10.0%,质量分数)的聚丙烯/聚四氟乙烯(PP/PTFE)共混物样品,采用超临界二氧化碳(scCO2)作为物理发泡剂对样品进行间歇发泡,研究了发泡样品的微观泡孔结构,并分析其形成机理。结果表明:挤出剪切作用下由分散PTFE为原料制造的微粉可以变成具有一定长径比的纤维状,并相互缠结形成网状结构,进而显著增加PP的熔体强度。流变性能测试结果表明,在低频区PP/PTFE复数黏度增强更加明显;制备的PP/PTFE发泡材料具有良好的微孔结构,泡孔均匀性明显改善,且随着PTFE添加量的增加,发泡材料孔径变小(平均值约31μm),孔密度增加10倍,达到7.4×10~8cells/cm~3,这归因于在发泡过程中PTFE颗粒增强PP异相成核且较高的熔体强度保证了完整泡孔的形成。相比于纯PP泡沫材料,PP/PTFE(1.0%)泡沫具有较大的发泡倍率,发泡倍率可达8倍,拉伸应力从原来6 MPa增加到11 MPa,断裂伸长率从107%增加到230%。  相似文献   

4.
为了提高直链型聚丙烯(PP)的发泡性能,选用三烯丙基异氰脲酸酯(TAIC)为交联剂与PP共混热压成PP片材,用伽玛射线对PP片材进行辐射改性。采用超临界二氧化碳发泡技术对不同TAIC含量和不同吸收剂量PP片材进行发泡研究。结果表明,TAIC的质量分数为0.5%~2%时,PP较为适宜发泡。当TAIC质量分数为2%(PP2)时,辐射交联增加了PP2的交联度,降低了PP2的熔体流动速率,提高了PP2的发泡性能。PP2片材吸收剂量为10 k Gy时,交联最为充分,此时PP2发泡的性能较好(泡沫的泡孔尺寸分布均匀,体积膨胀率为15)。在相同的发泡条件下,辐照改性PP2的泡孔直径大小随吸收剂量的增加而增大。  相似文献   

5.
为了连续化制备泡孔结构良好的微孔二醋酸纤维素(CDA)材料,采用超临界二氧化碳(SC-CO_2)辅助CDA挤出发泡,通过扫描电镜对微孔CDA材料断面形貌进行了观测,研究了CO_2注气量、螺杆转速和溶剂比对CDA泡孔形貌的影响,结果显示,随着CO_2注气量增加,泡孔密度从9.3×10~7 cm~(-3)增加至1.04×10~(11) cm~(-3),平均泡孔直径从10.06μm减小至1.16μm;随着螺杆转速的提高,压降速率显著增加,泡孔密度从6.6×10~7 cm~(-3)增加到了9.12×10~(10) cm~(-3),泡孔直径从28.1μm减小到了0.88μm;随着醇酮溶剂用量的增加,泡孔密度降低,并出现了泡孔合并现象。采用SC-CO_2辅助挤出发泡技术可以制备出含有致密泡孔结构的微孔CDA材料。  相似文献   

6.
将生物可降解聚酯聚己二酸/对苯二甲酸丁二酯(PBAT)添加到聚乳酸(PLA)基体中,利用超临界二氧化碳发泡方法,制备出孔间高度连通的高孔隙率PLA微孔发泡材料。泡孔结构测试表明,当PBAT质量分数为20%时,得到的泡孔尺寸最小(11.56μm),泡孔密度最大(11.2×10~8 cm~(-3)),开孔率高达96.2%。PBAT的加入降低了共混体系的熔体黏度,有利于提高泡孔壁连通的几率。根据实验结果,提出了PLA/PBAT共混物发泡样品开孔机理:在适当的发泡温度条件下,聚合物共混体系中熔体黏度较低的分散相随着泡孔长大而被拉伸变形直至破裂,熔体黏度较高的基体相可作为泡孔的支撑骨架而不至于塌陷。  相似文献   

7.
采用注塑成型方式制备微发泡聚丙烯(PP)材料,结合电子扫描显微镜(SEM)、差示扫描量热法(DSC)及热重分析(TG)等技术,研究了发泡剂对微发泡PP的泡孔及表面品质的影响。研究结果表明:不同发泡剂对微发泡PP泡孔及表面品质有显著的影响,以FPE-20为发泡剂,制得的微发泡PP的泡孔尺寸分布均匀,泡孔尺寸较小,为53.39μm;泡孔密度较大,为8.76×10~(12)个/cm~3;同时表面明显无气痕。  相似文献   

8.
以聚丙烯(PP)/nano-TiO2复合材料为研究对象,采用快速降压超临界微孔发泡技术,制备了泡孔密度、泡孔直径分别为2.8×107cell/cm3~3.15×109cell/cm3,46.36μm~6.08μm的PP/nano-TiO2微孔复合材料。研究了复合材料中nano-TiO2的质量分数、饱和压力及发泡温度对PP/nano-TiO2复合材料发泡行为的影响,通过扫描电镜(SEM)对微孔形貌进行表征。结果表明,加入nano-TiO2可以改善PP的发泡性能,并得到泡孔分布均匀的闭孔发泡材料;随复合材料中nano-TiO2质量分数由1%提高到5%,泡孔密度增加,泡孔直径减小。对于nano-TiO2质量分数为3%的PP/nano-TiO2复合材料,随着饱和压力的增加,泡孔直径和泡孔密度都增加;随着发泡温度的升高,泡孔密度减小,泡孔直径变大。  相似文献   

9.
以β-环糊精(BC)为成核剂,通过微孔注塑发泡工艺制备了发泡聚丙烯(PP)复合材料。采用差示扫描量热仪(DSC)、扫描电子显微镜(SEM)等技术,研究了不同含量BC (0.25%~7%,质量分数,下同)对发泡聚丙烯复合材料发泡性能及力学性能的影响。结果表明:随着BC的加入,PP的发泡性能得到明显改善。添加7%的BC可以得到理想的泡孔形貌,泡孔直径为27.17μm,密度达1.23×10~7cell/cm~3。BC的加入使PP的结晶温度、结晶速率、粘度均有明显改善,有利于PP在更高温度下结晶并防止泡孔坍塌和并泡。与发泡聚丙烯材料相比,发泡PP/BC复合材料的拉伸、弯曲、冲击强度分别提高了21.2%、7%、12%。  相似文献   

10.
将不同组分的聚丁二酸丁二醇酯(PBS)添加到聚乳酸(PLA)基体中形成非相容共混体系,利用超临界二氧化碳发泡方法制备出孔间高度连通的微孔发泡材料。将PBS添加到PLA基体中降低了共混体系的熔体粘度,异相成核作用致使泡孔密度增加、泡孔尺寸和泡孔壁厚度减小,这都将有利于增大泡孔连通的概率。泡孔结构数据表明,当PBS含量为20%(质量分数)、发泡温度为100℃时,得到的泡孔尺寸最小(9. 51μm),泡孔密度最大(18. 6×10~8cells/cm3~),开孔率最大(98. 2%)。基于PLA/PBS相态结构提出了共混物发泡样品的开孔机理,熔体粘度较低的PBS分散相随着泡孔长大而被拉伸变形直至破裂,熔体粘度较高的基体相PLA可作为泡孔的支撑骨架而不至于塌陷。  相似文献   

11.
采用密炼方式分别制备碳纤维(CF)、玻璃纤维(GF)、芳纶纤维(AF)增强聚丙烯(PP)母粒,通过注塑成型制备相应的聚丙烯/纤维复合发泡材料,研究了3种纤维对微发泡聚丙烯/纤维复合发泡材料力学性能的影响。结果表明,PP/CF复合发泡材料的综合性能提高的幅度最大,其中拉伸、压缩、弯曲强度分别提高了100.9%,80.4%,126.5%;PP/AF复合发泡材料的韧性最好,相对于纯PP提高了151.2%;并且,PP/CF复合发泡材料的泡孔参数最好,泡孔尺寸为28.97μm,泡孔密度为8.58×106cm~(-3),泡孔尺寸分布达到9.22μm。  相似文献   

12.
将生物可降解聚酯聚己二酸/对苯二甲酸丁二酯(PBAT)添加到聚乳酸(PLA)基体中,利用超临界二氧化碳发泡方法,制备出孔间高度连通的高孔隙率PLA微孔发泡材料。泡孔结构测试表明,当PBAT质量分数为20%时,得到的泡孔尺寸最小(11.56μm),泡孔密度最大(11.2×10~8 cm^(-3)),开孔率高达96.2%。PBAT的加入降低了共混体系的熔体黏度,有利于提高泡孔壁连通的几率。根据实验结果,提出了PLA/PBAT共混物发泡样品开孔机理:在适当的发泡温度条件下,聚合物共混体系中熔体黏度较低的分散相随着泡孔长大而被拉伸变形直至破裂,熔体黏度较高的基体相可作为泡孔的支撑骨架而不至于塌陷。  相似文献   

13.
以化学发泡为主线,在聚丙烯(PP)基体中添加弹性体三元乙丙橡胶(EPDM)制备微发泡聚丙烯复合材料。利用旋转流变仪、差示扫描量热法和扫描电镜等手段,系统地研究EPDM对微发泡PP材料发泡行为的影响。结果表明,EPDM的加入提高了PP材料的熔体强度,对PP材料发泡质量有明显改善;同时使PP复合材料的降温结晶峰向高温移动,能有效抑制泡孔的变形及并泡等恶化现象。当EPDM的质量分数为20%时,泡孔形态较为理想,其泡孔直径和泡孔密度分别为14.43μm,2.49×107cm-3。与未加EPDM的微发泡PP复合材料比较,EPDM的加入能够拓宽发泡PP复合材料的发泡温度窗口,发泡温度范围为180~195℃。  相似文献   

14.
以滑石粉为成核剂,超临界CO_2为发泡剂,采用间歇釜式方法制备微孔发泡木粉/聚丙烯复合材料。采用DSC、XRD和SEM对微孔发泡木粉/聚丙烯复合材料的结晶行为与泡孔结构进行了测定与分析。结果表明:滑石粉的添加能够提高微孔发泡木粉/聚丙烯复合材料的结晶温度,诱导产生不完善的α晶型;能够提高聚合物基体的熔体黏度,减小泡孔尺寸,增加泡孔密度,促使泡孔尺寸分布更均匀,最终能够形成泡孔密度为1.0×10~9个/cm~3、平均泡孔半径为16.4μm、发泡倍率为18倍、表观密度约为0.055g/cm~3的微孔发泡木粉/聚丙烯复合材料。  相似文献   

15.
利用超临界CO2发泡技术,制备了一种低介电常数的聚酰亚胺微孔薄膜。扫描电子显微镜观察表明,微孔薄膜具有实心表层及中心微孔层结构,中心微孔层内泡孔孔径约2μm,泡孔分布均匀。在相同的发泡温度下,发泡时间在10 s内,随着发泡时间增长,孔径较小(<1μm)的泡孔数目明显减小,泡孔尺寸增大。发泡约10 s后,泡孔尺寸变化略微增加。在230℃~270℃范围内,发泡温度越高,微孔薄膜中心微孔层内的泡孔孔径越小,孔径分布越均匀,泡孔密度越大,薄膜密度也越小。拉伸性能测试表明,随着密度减小,聚酰亚胺微孔薄膜的拉伸强度和拉伸模量下降。介电性能分析表明,聚酰亚胺微孔薄膜的介电常数明显下降,当密度为0.75 g/cm3时,聚酰亚胺微孔薄膜的介电常数降至2.21;在102Hz~107Hz频率范围内,微孔薄膜的介电常数具有较高的频率稳定性。  相似文献   

16.
以超临界CO_2为发泡剂,设计高温保压、低温快速泄压发泡的工艺,制备微孔发泡木粉/聚乳酸复合材料。利用X射线衍射仪、差示扫描量热仪、旋转流变仪对复合体系结晶及流变性能进行分析。采用排水法及扫描电镜研究了木粉含量对发泡材料表观密度、发泡倍率,泡孔密度及泡孔形貌的影响。结果表明,木粉的加入提高了木粉/聚乳酸复合材料熔体的复数黏度和储能模量,降低了聚乳酸的结晶度,提高了泡孔密度,减小了泡孔尺寸。当木粉含量为20%时,木粉/聚乳酸发泡材料表观密度为0.19g/cm~3,发泡倍率达到7倍,泡孔密度为7.23×10~8 cm~(-3),平均泡孔直径为20μm。  相似文献   

17.
以氯化聚乙烯(CPE)、热塑性聚氨酯(TPU)为原料,超临界CO_2为发泡剂,制备了TPU/CPE发泡珠粒。研究了TPU/CPE共混物的相容性、流变性能、发泡性能及CPE的含量对发泡珠粒抗收缩性能的影响。结果表明,CPE与TPU有良好的相容性,CPE的加入能有效改善TPU的发泡性能与抗收缩性能,CPE含量为10%时,得到平均泡孔尺寸最小(8. 851μm)、泡孔密度最大(1. 763×10~(12)cm~(-3))的发泡材料。TPU/CPE发泡珠粒的收缩率随着CPE含量的增加而降低,CPE的加入对降低TPU发泡珠粒的收缩有着显著作用。  相似文献   

18.
龚维  蒋团辉  王昌银  付海  何力 《材料导报》2016,30(18):66-69
运用湿法研磨和溶液法将化学发泡剂加载到硅藻土的微孔中,通过浮选技术、TG以及EDS等表征方式,分析了湿法研磨和溶液法对复合发泡剂加载效果的影响因素,并通过注塑成型方式制备微发泡聚烯烃复合材料,研究其对发泡质量的影响规律。结果表明,湿法研磨不适于制备硅藻土/OBSH复合发泡剂,溶液法成功制备了硅藻土/OBSH复合发泡剂。添加硅藻土/OBSH复合发泡剂的微发泡聚烯烃材料,其发泡质量显著优于相同条件下使用纯OBSH发泡剂时的发泡质量,泡孔直径从275.47μm降低至176.45μm,泡孔密度从3.32×10~3个/cm~3增加至5.73×10~4个/cm~3。  相似文献   

19.
以固态环氧树脂为基体,采用"两步升温"通过化学发泡法制备了固态环氧树脂发泡材料,通过旋转流变仪和扫描电子显微镜对环氧树脂的流变性能和发泡性能以及泡孔结构进行了分析。结果表明,固化剂双氰胺含量为14%时,固化反应效率最大,"两步法"能有效改善环氧树脂的发泡性能,得到平均泡孔尺寸最小(272.3μm)、泡孔密度最大(0.69×10~2 cm~(-3))的发泡材料,并且能在一定程度上克服固态环氧树脂的加工难度,实现其高效应用。  相似文献   

20.
利用型腔体积可控注塑发泡装置制备微发泡聚丙烯(PP)/粉末橡胶复合材料,通过橡胶粒子的分散性以及复合材料的结晶行为,研究不同橡胶粒子对聚丙烯复合材料发泡行为和力学性能的影响。结果表明:橡胶粒子的加入使微发泡聚丙烯材料的泡孔分布细密而均匀,微发泡聚丙烯/马来酸酐接枝聚丙烯/粉末丁腈胶(PP/PP-MAH/NBR)复合材料的发泡质量较理想,其泡孔密度和尺寸分别为7.64×106个/cm3,29.78μm;综合泡孔结构和力学性能,微发泡聚丙烯/聚丙烯接枝马来酸酐/粉末羧端基丁腈胶(PP/PP-MAH/CNBR)复合材料的力学性能最优,与纯PP比较其冲击强度提升了2.2倍,拉伸强度仅仅降低了26%,是理想的微发泡复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号