首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a compatibilizer, namely, an acrylonitrile–butadiene–styrene copolymer (ABS) grafted with maleic anhydrade (MAH) (ABS‐g‐MAH), on the mechanical properties and morphology of an ABS/polycarbonate (PC) alloy were studied The results showed that a small quantity of ABS‐g‐MAH has a very good influence on the notched Izod impact strength of the ABS/PC alloy without compromising other properties such as the tensile strength, flexural strength, and Vicat softening temperature (VST). The impact strength of the ABS/PC alloy, to a great extent, depends on the loading of ABS‐g‐MAH and the degree of grafting (DG) of MAH in the ABS‐g‐MAH. DSC analysis and SEM observation confirmed that ABS‐g‐MAH could significantly improve the compatibility of the ABS/PC alloy. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 831–836, 2001  相似文献   

2.
The rheology, morphology, and mechanical properties of blends of high‐density polyethylene (HDPE) with a semiflexible liquid crystalline copolyester (SBH) were studied in order to assess the compatibilizing ability of added PE‐g‐SBH copolymers, and its dependence on the molar mass of the PE matrix, and on the technique used for blend preparation. The PE‐g‐SBH copolymers were synthesized as described in previous articles, either by the polycondensation of the SBH monomers in the presence of a functionalized PE sample containing free carboxyl groups, or by reactive blending of the latter polymer with preformed SBH. Two samples of HDPE having different molar masses, and two samples of SBH with different melt viscosity and different microstructure, were used for preparing the blends. The two components and the compatibilizer were either blended in a single batch or used to prepare binary master blends to which the third component was added at a later stage. The results indicate that the PE‐g‐SBH copolymers do, in fact, compatibilize the PE–SBH blends and that the effect is more pronounced with the lower molar mass PE matrix and with the SBH sample having lower viscosity. The experiments carried out on blends prepared with different techniques show that the compatibilizing ability of the graft copolymer is improved if the latter is first blended with either of the two main components. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 603–613, 1999  相似文献   

3.
The poly(ethylene 1‐octene)‐g‐maleic anhydride copolymers (POE‐g‐MAH) with high grafting degree (GD) (>9%) have previously been obtained by a solvothermal method in our laboratory. It is found that the low GD (less than 2.5%) did not change the bulk properties of polyolefine elastomers (POE). Thereforefore, it is worth further understanding whether a high GD POE‐g‐MAH copolymer differs from the pure POE in its comprehensive properties and performance. In this article, POE‐g‐MAH with different GDs were synthesized and characterized by thermogravimetric analyze (TGA), differential scanning calorimetry (DSC), wide angle X‐ray diffraction spectroscopy (WAXD), and dynamic rheological testing. The results show that the thermal decomposition temperature, melting points, the crystallization temperatures, and the crystallinities were decreased by the increasing GD. By WAXD, three peaks respectively, attributed to the amorphous phase, the (110) and (200) interferences of the orthorhombic unit cell were detected, and they also decreased by the increasing GD. And the POE‐g‐MAH copolymers had higher storage modulus (G′), loss modulus (G″), and complex viscosity (η*) than those of pure POE. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

5.
Poly(butylene terephthalate)/high density polyethylene (PBT/HDPE) blends and PBT/HDPE‐grafted maleic anhydride (PBT/HDPE‐g‐MAH) blends were prepared by the reactive extrusion approach, and the effect of blend compositions on the morphologies and properties of PBT/HDPE blends and PBT/HDPE‐g‐MAH blends was studied in detail. The results showed that flexural strength, tensile strength, and notched impact strength of PBT/HDPE blends decreased with the addition of HDPE, and flexural strength and tensile strength of PBT/HDPE‐g‐MAH blends decreased, while the notched impact strength of PBT/HDPE‐g‐MAH increased with the addition of HDPE‐g‐MAH. Compared with PBT/HDPE blends, the dimension of the dispersed phase particles in PBT/HDPE‐g‐MAH blends was decreased and the interfacial adhesion was increased. On the other hand, the effects of HDPE and HDPE‐g‐MAH contents on the crystalline and the rheological properties of the blends were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6081–6087, 2006  相似文献   

6.
Poly(methacrylic acid) (PMAA) grafted porous PE membranes (PE‐g‐PMAA) were studied. It was found that (1) a wide range of graft yields can be achieved by varying irradiation time (20–240 min) and monomer concentration (0.22M–0.66M), (2) the grafted membrane exhibits reversible permeability response, (3) the membrane shows a maximum permeability response at an intermediate permeant molecular weight due to size exclusion effect, and (4) depending on the graft yield, two types of permeability response can be obtained. These observations are consistent with our earlier study on poly(N‐isopropylacrylamide) (PNIPAAm)–grafted porous polyethylene membranes. In addition, it was observed that the solvent used during grafting may influence the graft location—presumably due to variations in pore wetting. Specifically, compared to water solvent, methanol can increase grafting inside membrane pores, an observation inferred from membrane swelling, thickness measurement, and SEM characterization. Moreover, preferential grafting inside the membrane pores, as affected by increasing methanol content in the grafting solvent, results in lower membrane permeability and a greater pore graft‐controlled type of permeability response. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 778–786, 2000  相似文献   

7.
The nonisothermal crystallization kinetics of high‐density polyethylene (HDPE) and polyethylene (PE)/PE‐grafted maleic anhydride (PE‐g‐MAH)/organic‐montmorillonite (Org‐MMT) nanocomposite were investigated by differential scanning calorimetry (DSC) at various cooling rates. Avrami analysis modified by Jeziorny, Ozawa analysis, and a method developed by Liu well described the nonisothermal crystallization process of these samples. The difference in the exponent n, m, and a between HDPE and the nanocomposite indicated that nucleation mechanism and dimension of spherulite growth of the nanocomposite were different from that of HDPE to some extent. The values of half‐time (t1/2), K(T), and F(T) showed that the crystallization rate increased with the increase of cooling rates for HDPE and composite, but the crystallization rate of composite was faster than that of HDPE at a given cooling rate. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. It was 223.7 kJ/mol for composite, which was much smaller than that for HDPE (304.6 kJ/mol). Overall, the results indicated that the addition of Org‐MMT and PE‐g‐MAH could accelerate the overall nonisothermal crystallization process of PE. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3054–3059, 2004  相似文献   

8.
The copolymer of styrene–ethylene–butylene–styrene triblock copolymer‐g‐polylactic acid (SEBS‐g‐PLA) was successfully prepared using a novel solvothermal synthetic method, in which the graft copolymerization of PLA and SEBS was simply performed in cholorform solution at 100–150°C with benzoyl peroxide (BPO) as initiator. The effect of various factors including the reaction temperature and time and the content of BPO and PLA on the graft copolymerization was investigated in detail. It is found that the optimal reaction condition for the grafted copolymers SEBS‐g‐PLA was 120°C for 5 h, while the optimal formulation of SEBS/PLA/BPO was 5 g/2 g/0.5 g in 30 mL chloroform. The properties and microstructures of the obtained SEBS‐g‐PLA copolymers were also studied. The tensile strength and elongation at break were higher than that of pure SEBS and improved with the increase of grafting degree. In addition, SEBS‐g‐PLA copolymer possessed two‐phase structure with vague phase boundaries. The as‐prepared SEBS‐g‐PLA copolymers can be used as the toughening component to improve the impact strength of PLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Three polypropylene‐g‐polystyrene (PP‐g‐PS) graft copolymers with the same branch density but different branch lengths were evaluated as compatibilizing agents for PP/PS blends. The morphological and rheological results revealed that the addition of PP‐g‐PS graft copolymers significantly reduced the PS particle size and enhanced the interfacial adhesion between PP and PS phases. Furthermore, it is verified that the branch length of PP‐g‐PS graft copolymer had opposite effects on its compatibilizing effect: on one hand, increasing the branch length could improve the compatibilizing effect of graft copolymer on PP/PS blends, demonstrated by the reduction of PS particle size and the enhancement of interfacial adhesion; on the other hand, increasing the branch length would increase the melt viscosity of PP‐g‐PS graft copolymer, which prevented it from migrating effectively to the interface of blend components. Additionally, the crystallization and melting behaviors of PP and PP/PS blends were compared. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40126.  相似文献   

10.
High frequency (HF) welding of linear low density polyethylene (LLDPE) melt blends with polyamide 6 (PA6) was done at 27.12 MHz using maleic anhydride grafted polyethylene (PE‐g‐MAH) as compatibilizer. HF welding was not possible for the blends at room temperature, but possible at higher temperatures (50, 80°C) although the maximum relaxation frequency was lower than the operating frequency. Greater dielectric constant, dissipation factor, and welding performance were obtained when PA 6 was premixed with PE‐g‐MAH rather than the one‐shot process where all the components were mixed simultaneously. This was interpreted in terms of lowered viscosity of PA 6 phase, which encapsulates the flow effectively and provides great skin effect. Also, the peeling force of resin–resin was greater than resin–nylon mesh due to the higher melting temperature and vacancy of nylon mesh. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
Research has been devoted to the desalination of saline water to fresh water suitable for human demands because of the shortage of water in some countries. Therefore, in this study, reverse‐osmosis membranes were prepared via the γ‐radiation graft copolymerization of acrylic acid onto high‐density and low‐density polyethylene. The factors that could affect the grafting process, such as the solvent type, monomer and inhibitor concentration, and irradiation dose, were investigated to determine the optimum conditions for radiation grafting. The polyethylene grafted acrylic acid copolymers (PAAc‐g‐PE) graft copolymer was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and mechanical, rheological, and thermal property testing to illustrate the possibility of practical use in water desalination. The prepared grafted membranes showed significant results in the reverse‐osmosis desalination method with underground saline water. The factors affecting the desalination of water, such as the water flux, operation time, and grafting percentage, were studied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45410.  相似文献   

12.
Temperature‐responsive polymers have recently gained importance due to their applications in drug delivery. Herein, temperature‐responsive graft copolymer (Alg‐g‐PDEAAm) of alginate and N,N‐diethylacrylamide was synthesized by microwave‐assisted copolymerization using potassium persulfate/N,N,N′,N′‐tetramethylethylenediamine initiator system. The reaction conditions for the best grafting (331%) have been optimized by changing microwave irradiation time, temperature, N,N‐diethylacrylamide, and alginate concentrations. The spectroscopic characteristic, thermal properties, and surface morphology of the copolymers were investigated by FTIR, 1H‐NMR, DSC/TGA, XRD, gel permeation chromatography, and SEM. Furthermore, low critical solution temperatures of Alg‐g‐PDEAAm copolymers were detected by UV spectroscopy. Swelling ratio of graft microspheres was carried out at 25, 32, and 37 °C, and microspheres were found exhibiting temperature‐responsive property. Cytotoxicity test indicated the Alg‐g‐PDEAAm copolymer and its microsphere were biocompatible. Therefore, based on the results the synthesized temperature‐responsive copolymer could be considered as a promising biomaterial. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46688.  相似文献   

13.
To improve the mechanical properties of poly(vinyl chloride) (PVC), the possibility of combining PVC with elastomers was considered. Modification of natural rubber (NR) by graft copolymerization with methyl methacrylate (MMA) and styrene (St) was carried out by emulsion polymerization by using redox initiator to provide an impact modifier for PVC. The impact resistance, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM) of St and MMA grafted NR [NR‐g‐(St‐co‐MMA)]/PVC (graft copolymer product contents of 5, 10, and 15%) blends were investigated as a function of the amount of graft copolymer product. It was found that the impact strength of blends was increased with an increase of the graft copolymer product content. DMA studies showed that NR‐g‐(St‐co‐MMA) has partial compatibility with PVC. SEM confirmed a shift from brittle failure to ductility with an increase graft copolymer content in the blends. The mechanical properties showed that NR‐g‐(St‐co‐MMA) interacts well with PVC and can also be used as an impact modifier for PVC. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1666–1672, 2004  相似文献   

14.
Solvothermal process was successfully developed to graft dibutylmaleate (DBM) onto poly(ethylene‐co‐1‐octene) (POE) with dicumyl peroxide (DCP) as free radical‐initiator. FTIR spectra demonstrate that DBM is successfully grafted onto the backbone of POE by this novel method. The influences of DBM content, DCP concentration, POE concentration, reaction temperature and reaction time on the grafting copolymerization have been investigated in detail through grafting degree (GD). It is worthy to indicate that high grafting degree (above 15%) can be achieved through the one‐pot way when the graft reaction is carried out in 40 mL toluene at 150°C for 5 h with 1.6 g DBM, 6–8 g POE and 0.35 g DCP. This developed solvothermal process is becoming an effective way to prepare POE‐g‐DBM graft copolymers, and can be extended to other systems. In addition, TGA results show that the thermal properties of POE are enhanced after the grafting reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2‐ethylene‐4‐methane‐imidazole (EMI‐2,4) was successfully applied in the PP/maleic anhydride‐grafted ethylene‐vinyl acetate copolymer (MAH‐g‐EVA), and the obtained blends named as dynamically cured PP/MAH‐g‐EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH‐g‐EVA/epoxy blends shows that MAH‐g‐EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH‐g‐EVA/epoxy blends is the embedding of the epoxy particles by the MAH‐g‐EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH‐g‐EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH‐g‐EVA/epoxy blends could have contained embedded MAH‐g‐EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH‐g‐EVA/epoxy stability compared with the pure PP. Wide‐angle x‐ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Polyimide‐g‐nylon 6 copolymers were prepared by the polymerization of phenyl 3,5‐diaminobenzoate with several diamines and dianhydrides with a one‐step method. The polyimides containing pendant ester moieties were then used as activators for the anionic polymerization of molten ε‐caprolactam. Nylon 6‐b‐polyimide‐b‐nylon 6 copolymers were prepared by the use of phenyl 4‐aminobenzoate as an end‐capping agent in the preparation of a series of imide oligomers. The oligomers were then used to activate the anionic polymerization of ε‐caprolactam. In both the graft and copolymer syntheses, the phenyl ester groups reacted quickly with caprolactam anions at 120°C to generate N‐acyllactam moieties, which activated the anionic polymerization. All the block copolymers had higher moduli and tensile strengths than those of nylon 6. However, their elongations at break were much lower. The graft copolymers based on 2,2′‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride and 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane displayed elongations comparable to that of nylon 6 and the highest moduli and tensile strengths of all the copolymers. The thermal stability, moisture resistance, and impact strength were dramatically increased by the incorporation of only 5 wt % polyimide into both the graft and block copolymers. The graft and block copolymers also exhibited improved melt processability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 300–308, 2006  相似文献   

17.
A procedure to improve the properties of styrene‐butadiene‐styrene (SBS) copolymer modified bitumen by grafting of maleic anhydride (MAH) onto SBS in the presence of benzoyl peroxide (BPO) as initiator was proposed. The effects of the grafting degree (GD) on the properties of modified bitumen were investigated. FTIR spectroscopy was employed to verify the grafting of MAH onto SBS. The GD of MAH onto SBS was determined by a back titration procedure. To assess the effects of the GD of grafted SBS on properties of modified bitumen, the softening point, penetration, ductility, elastic recovery, penetration index, viscosity, storage stability, and dynamic shear properties were tested. Experimental results indicated that the SBS grafted with maleic anhydride (SBS‐g‐MAH) copolymer was successfully synthesized by solvothermal method, and different GD of the SBS‐g‐MAH was obtained by control the MAH concentration. The GD of the MAH onto SBS has great effect on the rheological properties of the modified bitumen, and the high temperature performance and storage stability of modified bitumen were improved with the GD of the MAH onto SBS increasing. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
A functionalized high‐density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 μm (PA6/UHMWPE, 80/20) to less than 4 μm (PA6/UHMWPE/HDPE‐g‐MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE‐g‐MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE‐g‐MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE‐g‐MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 232–238, 2000  相似文献   

19.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
Several different composition temperature‐ and pH‐sensitive poly(acrylic acid‐gN‐isopropylacrylamide) (P(AA‐g‐NIPAM)) graft copolymers were synthesized by free‐radical copolymerization utilizing macromonomer technique. The phase behavior and conformation change of P(AA‐g‐NIPAM) in aqueous solutions were investigated by UV–vis transmittance measurements, fluorescence probe, and fluorescence quenching techniques. The results demonstrate that the P(AA‐g‐NIPAM) copolymers have temperature‐ and pH‐sensitivities, and these different composition graft copolymers have different lower critical solution temperature (LCST) and critical phase transition pH values. The LCST of graft copolymer decreases with increasing PNIPAM content, and the critical phase transition pH value increases with increasing Poly(N‐isopropylacrylamide) (PNIPAM) content. At room temperature (20°C), different composition of P(AA‐g‐NIPAM) graft copolymers in dilute aqueous solutions (0.001 wt %) have a loose conformation, and there is no hydrophobic microdomain formation within researching pH range (pH 3 ~ 10). In addition, for the P(AA‐g‐NIPAM) aqueous solutions, transition from coil to globular is an incomplete reversible process in heating and cooling cycles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号