共查询到20条相似文献,搜索用时 31 毫秒
1.
碳质材料在锂硫电池中的应用研究进展 总被引:1,自引:0,他引:1
随着石墨负极的成功商用,锂离子电池在智能手机、笔记本电脑等便携式电子设备中已得到广泛的应用。经过20多年的发展,现有基于嵌锂化合物正极的锂离子电池已接近其理论容量,但仍不能满足高速发展的电子工业和新兴的电动汽车等行业的要求,寻找具有更高能量密度的电池系统迫在眉睫。锂硫电池系统具有极高的理论能量密度,在多种储能系统中是最具潜力的一种二次电池。但是锂硫电池中也存在硫的电导率极低、多硫化物溶解迁移等问题,使其在走向实用化的过程中遇到许多困难。纳米碳质材料在新型锂硫电池的开发过程中处于重要地位,通过纳米炭的引入,可以获得导电复合正极材料,控制多硫化物的穿梭,从而有望实现正极硫材料的高效利用。综述了基于纳米炭-硫复合正极材料,尤其是碳纳米管、石墨烯、多孔炭以及其杂化物等材料复合的电极,分析其结构与锂硫电池性能的关系,并展望锂硫电池的发展方向。 相似文献
2.
采用乙炔黑、土状石墨、Cabot Vulcan XC-72炭黑、Cabot Bp2000超级导电炭黑作为硫载体制备了一系列含硫复合材料。通过X射线粉末晶体衍射(XRD)、扫描电子显微镜(SEM)、比表面积分析(BET)等分析测试手段对材料的物理性能进行表征,利用电池测试系统对材料的电化学性能进行了测试。结果表明基体材料表面结构、孔径分布及比表面积等因素都对复合材料的电化学性能造成影响,综合性能最好的基体材料为BP2000超级导电炭黑,其初始放电比容量高达1385.1mAh/g,在室温下经过30次循环之后电池放电比容量仍保持在1080.2mAh/g,容量保持率高达78%。 相似文献
3.
煤炭作为一种来源广泛的非金属矿物,是制备大量多孔碳的理想原料。本文以1/3焦煤为原料,NaOH和KOH为活化剂,制备了多孔碳,并研究了硫/多孔碳复合正极材料的电化学性能。结果表明:采用NaOH和KOH单独活化时制备的多孔碳比表面积很大,分别为1 649 m2/g和1 867 m2/g,而采用NaOH和KOH混合活化制备的多孔碳比表面积大幅度下降,当NaOH与KOH质量比为1:1活化时多孔碳的比表面积最小,为290 m2/g。电化学测试表明,NaOH与KOH质量比为1:1混合活化的硫/多孔碳正极材料的电性能优于NaOH和KOH单独活化的硫/多孔碳正极材料,0.2 C下首次放电比容量为790 mA·h/g,库仑效率为93.16%,100次循环后放电比容量为740 mA·h/g。还分析讨论了煤基多孔碳孔径分布对电化学性能的影响。 相似文献
4.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响。开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题。由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础。锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用。近年来,锂离子电池开始在电动汽车等动力电池领域得到应用。但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高。由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2 600 Wh·kg~(-1))远高于目前广泛使用的锂离子电池。此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点。因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一。硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离。迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面。相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等。此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附。将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能。本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望。 相似文献
5.
采用氧化石墨烯(grapheneoxide,GO)作为制备石墨烯的前驱体,通过液相还原自组装过程与硫纳米颗粒进行复合,获得了高性能的还原氧化石墨烯/硫(r GO/S)复合正极材料。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、拉曼光谱、X射线光电子能谱分析(XPS)等对材料微观形貌与结构进行表征。结果表明:硫纳米颗粒均匀分布在石墨烯片层间,并且硫纳米颗粒被石墨烯片层有效地封装,硫在35-r GO/S复合物中的质量分数高达83.6%。该35-r GO/S复合正极在0.2C电流密度下初始放电容量可达1197.3mAh·g^-1,经过200次循环后容量仍保持在730mAh·g^-1左右,表现出优异的循环性能。 相似文献
6.
以ZIF-67为模板制备了一系列具有不同金属Co负载量的S/Co-NC复合材料, 并将其应用于锂-硫电池正极中进行电化学性能研究。采用扫描电镜(SEM)和透射电镜(TEM)对Co-NC材料的多面体形貌及多孔结构进行表征; 采用X射线衍射(XRD)分析了Co-NC中金属Co的结晶状态; 采用氮气吸脱附方法分析了Co-NC材料的比表面积及孔结构。研究表明, 当刻蚀时间为48 h, 即Co含量为15.93wt%时, 复合硫正极呈现出最佳的循环性能以及倍率性能, 在0.2C电流密度下从第50圈到200圈循环的容量保持率为94.84%, 5.0C高倍率下的放电比容量为718.8 mAh?g -1。 相似文献
7.
以经活化处理的石墨烯(AG)为主体材料, 通过化学还原法制备了石墨烯负载硫的复合正极材料AG/S。SEM、EDX和TEM测试结果表明经活化处理后形成手风琴结构的AG, 有利于电解液的浸润; 活性物质硫均匀地负载在AG表面, 同时沉积在AG的层间。电化学测试表明: 在400 mA/g电流密度下, AG/S复合正极材料首次放电比容量为1452.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在909.7 mAh/g; 在1000 mA/g电流密度下, AG/S复合材料首次放电比容量为1309.9 mAh/g, 经过200次循环之后, 放电比容量仍保持在717.1 mAh/g。AG/S复合正极材料的倍率性能、库仑效率和循环性能优异, 这得益于小尺寸的硫在材料中均匀分布, 活化石墨烯优良的导电性以及其结构对硫的固化作用。 相似文献
8.
“双碳”战略要求新型储能器件具备更高的能量密度和更低的成本。锂硫电池因其低成本、环保和高比能(2600 Wh kg-1)等优势,而成为储能领域中最具潜能的电池体系,已受到了广泛的关注及研究。近年来,锂硫电池已取得了系列进展,但仍面临一些问题与挑战,包括硫固有的电荷传输效率差、可溶性多硫化物的“穿梭效应”、充放电过程中的剧烈体积膨胀及锂枝晶的生长等,这些问题会导致锂硫电池性能下降甚至失效。碳基硫宿主具有多孔、高电导、轻质、大比表面积等优点,能够有效解决以上难题,已成为锂硫电池研究领域中的重要方向。而碳材料种类繁多,有碳纳米纤维、碳纳米管、碳纳米片、碳纳米花等,不同形貌或具备不同纳米尺度维度的碳纳米结构对锂硫电池的性能具有不同的影响规律。基于此,本文围绕高性能锂硫电池碳基硫宿主进行综述,分类综述了一维、二维、及多维复合碳材料在锂硫电池领域的应用及其性能,阐述不同维度碳基硫宿主对其电化学性能的影响规律,并对未来的研究方向进行了一定的展望。 相似文献
9.
在近20多年的发展过程中,锂离子电池已经越来越接近于其理论能量密度的极限,并且随着化石能源消耗和电动车需求量的增加,锂离子电池已经不能满足于社会的需要,寻找可替代的绿色新能源也变得愈发重要。其中,锂硫电池是最有希望代替锂离子电池,成为下一代电化学储能系统的电池之一。由于硫的无毒性、低成本和高的能量密度等优势,使得锂硫电池吸引了研究者们的广泛关注。硫作为锂硫电池中非常重要的一部分——正极材料,对于电池的循环寿命、循环稳定性、能量密度、库伦效率等方面产生了非常重要的影响。但是锂硫电池中存在的关键问题亦限制了其实际应用,例如硫的导电性差、多硫化物中间体的"穿梭效应"、较低的硫负载量、大的体积膨胀以及复杂的内部反应机理等。为了提高锂硫电池整体的性能,设计具有高的比表面积、优越的导电性以及更多的活性位点的基底材料来负载硫变得越来越重要。为解决这些问题,研究者们设计了各种不同材料来进行硫的负载,例如碳-硫复合材料、金属氧化物-硫复合材料、聚合物-硫复合材料等。其中由于碳材料具有密度低、比表面积大、导电性好、结构多样、易于加工制备和价格低廉等优点,引起了研究者们的广泛关注,因此研究者们相继实现了用一维、二维以及三维等不同结构的碳材料来负载硫,使得锂硫电池的循环寿命、循环稳定性和库伦效率得到了有效的提高。虽然在循环寿命等方面,研究者们做出了很大的贡献,但是硫的负载量却有限,从而导致电池整体的能量密度仍然很低。从商业化的角度来看,电池能量密度的高低才是研究者们关注的重点,因此研究者们在提高其性能的同时,也在不断地提高硫的负载量,以求达到更高的能量密度。本文主要从四个方面进行了相关总结:首先,概述了锂硫电池最新发展状况;其次,概要介绍了锂硫电池中存在的反应机理和阻碍锂硫电池发展的主要问题;再次,重点总结了提高锂硫电池的性能和载硫量方面的研究进展,并简单介绍了面载量、面容量和电解液与硫的比值对电池整体性能的影响;最后,总结和展望了锂硫电池未来可能的发展方向。 相似文献
10.
11.
12.
以低交换速率的正戊醇作为溶剂,通过相转化法制备了内部结构均一无大孔结构的ZIF-67/CNT/PAN相转化膜,再经硫化、碳化后制备了Co4S3修饰的蜂窝状多孔碳膜(Co4S3@DH-NC).XRD表征结果证明了Co4S3的成功合成,其负载量高达19.5%(质量分数).蜂窝状多孔结构可以有效促进电解液以及多硫化物在膜内的均匀分散;Co4S3均匀负载于蜂窝状结构内部,电负性更强的S有利于Co4S3吸附多硫化物;CNT为骨架的高导电网络促进了Co4S3对多硫化物的催化转化.以Co4S3@DH-NC为隔层的锂硫电池在4 C下循环400圈后比容量能保有581.3 mA·h/g,库仑效率为100%左右.Li2S的沉积放电比容量为681.811 mA·h/g,相较于DH-NC... 相似文献
13.
综述了锂硫电池硫正极材料的研究现状。针对锂硫电池目前存在的问题,展望了其发展趋势,并指出硫/有序多孔碳纳米复合材料对提升锂硫电池性能有重要研究价值;同时形成三维空间传导网络的导电添加剂和具有良好粘接性、导电性及电化学稳定性的粘结剂对锂硫电池性能提升也具有重要作用。 相似文献
14.
15.
16.
17.
18.
由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响.开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题.由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础.锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用.近年来,锂离子电池开始在电动汽车等动力电池领域得到应用.但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高.由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2600 Wh·kg-1)远高于目前广泛使用的锂离子电池.此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点.因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一.硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离.迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面.相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等.此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附.将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能.本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望. 相似文献
19.
20.
在能源危机与环境问题日益凸显的背景下,电化学储能技术得到了迅速发展。在“超越锂”储能领域的竞争者中,锂硫电池(Li-S)因其具有高理论比容量、高质量能量密度并且环境友好、价格低廉等优点,成为最有前途的新储能技术。但是,锂硫电池的发展仍存在一些瓶颈问题需要解决,例如正极材料导电性能差、多硫化物穿梭效应及在充放电过程中电极体积膨胀等。作为锂硫电池的关键组成部分,电极和隔膜材料的设计和制备对解决这些问题及电池整体性能提升起到了重要的作用。金属有机骨架(MOFs)及衍生的复合材料作为锂硫电池电极或隔膜修饰材料,具有质量轻、电子和离子传导性好、孔道丰富和活性位点均匀分布等优势。此外,这类复合材料还具备形貌和组分可控、来源丰富和孔径可调等特性,从而便于机制研究。本文全面介绍了锂硫电池组成、工作原理并综述了近几年MOFs及衍生复合材料在锂硫电池中的研究进展,重点讨论了其在正极材料和隔膜材料中的应用,并对未来该材料在锂硫电池研究方向上的前景和突破进行了展望。 相似文献