首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epoxidized natural rubber (ENR) was prepared using the performic epoxidation method. TPVs based on ENR/PP blends were later prepared by melt‐mixing processes via dynamic vulcanization. The effects of blend ratios of ENR/PP, types of compatibilizers, and reactive blending were investigated. Phenolic modified polypropylene (Ph‐PP) and graft copolymer of maleic anhydride on polypropylene molecules (PP‐g‐MA) were prepared and used as blend compatibilizers and reactive blending components of ENR/Ph‐PP and ENR/PP‐g‐MA blends. It was found that the mixing torque, apparent shear stress and apparent shear viscosity increased with increasing levels of ENR. This is attributed to the higher viscosity of the pure ENR than that of the pure PP. Furthermore, there was a higher compatibilizing effect because of the chemical interaction between the polar groups in ENR and PP‐g‐MA or Ph‐PP. Mixing torque, shear flow properties (i.e., shear stress and shear viscosity) and mechanical properties (i.e., tensile strength, elongation at break, and hardness) of the TPVs prepared by reactive blending of ENR/Ph‐PP and ENR/PP‐g‐MA were lower than that of the samples without a compatibilizer. However, the TPVs prepared using Ph‐PP and PP‐g‐MA as compatibilizers exhibited higher values. We observed that the TPVs prepared from ENR/PP with Ph‐PP as a compatibilizer gave the highest rheological and mechanical properties, while the reactive blending of ENR/PP exhibited the lowest values. Trend of the properties corresponds to the morphology of the TPVs. That is, the TPV with Ph‐PP as a blend compatibilizer showed the smallest rubber particles dispersed in the PP matrix, while the reactive blending of ENR/PP‐g‐MA showed the largest particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4729–4740, 2006  相似文献   

2.
Epoxidized natural rubbers (ENRs) with epoxide levels of 10, 20, 30, 40 and 50 mol % were prepared. The ENRs were later used to prepare thermoplastic vulcanizates (TPVs) by blending them with poly(methyl methacrylate) (PMMA) using various formulations. Dynamic vulcanization, using sulfur as a vulcanizing agent, was performed during the mixing process. The mixing torque increased as the ENR contents and epoxide molar percentage increased. This was because of an increasing chemical interaction between the polar groups of the blend components, particularly at the interface between the elastomeric and thermoplastic phases. The ultimate tensile strength of the TPVs with ENR‐20 was high because of strain‐induced crystallization. ENRs with epoxide levels >30 mol % exhibited an increase of tensile strength because of increasing levels of chemical interaction between the molecules and the different phases. The hardness of the TPVs also increased with increased epoxide levels but decreased with increased contents of ENRs. Two morphology phases with small domains of vulcanized ENR particles dispersed in the PMMA matrix were observed from scanning electron microscopy micrographs. The TPVs based on ENR‐20 and ENR‐50 showed smaller dispersed rubber domains than those of the other types of ENRs. Furthermore, the size of the vulcanized rubber domain decreased with increasing amounts of PMMA in the blends. The decomposition temperature of the TPVs also increased as both the levels of ENRs in the blends and the epoxide molar percentage increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1251–1261, 2005  相似文献   

3.
Maleated natural rubbers (MNRs) were prepared using various levels of maleic anhydride (MA) at 4, 6, 8, 10, and 12 phr. Dynamically cured 60/40 MNR/PP blends with phenolic‐modified polypropylene (Ph‐PP) compatibilizer at a loading level of 5 wt % of PP were prepared by melt mixing process using sulfur vulcanization system. The influence of the level of MA on properties of the thermoplastic vulcanizates (TPVs) was studied. It was found that the mixing torque, apparent shear stress, shear viscosity, tensile strength, and hardness properties increased with increasing levels of the MA or grafted succinic anhydride groups in the MNR molecules. This is attributed to an increase in chemical interaction and reaction between methylol groups in the Ph‐PP molecules and polar functional groups in the MNR molecules upon increasing levels of the grafted succinic anhydride groups. As a consequence, compatibilizing block copolymers of MNR and PP blocks were formed. The block copolymers were capable of compatibilizing with MNR and PP blend components via the respective blocks. Recyclability of the MNR/PP TPVs was also studied. It was found that, after processing through a number of cycles by injection molding and extrusion processing, the TPV exhibited marginal decreases in mechanical properties. This corresponded to slightly increasing size of the dispersed vulcanized rubber domains. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Maleated natural rubber (MNR) was prepared and used to formulate thermoplastic vulcanizates (TPVs) based on various MNR/PP blends. The influence of mixing methods on the TPVs properties was first studied. We found that mixing all ingredients in an internal mixer provided the TPVs with better mechanical properties. The final mixing torque, shear stress, and shear viscosity of the TPVs prepared with various blend ratios of MNR/PP increased with increasing levels of MNR in the blends. This may be attributed to higher shear viscosity of the pure MNR than that of the pure PP. Furthermore, as evidenced in SEM micrographs, the TPVs are two phase morphologies with dispersed small vulcanized rubber domains in the PP matrix. Therefore, the higher content of PP caused the more molten continuous phase of the flow during mixing and rheological characterization. Tensile strength and hardness of the TPVs increased with increasing levels of PP, while the elongation at break decreased. Furthermore, the elastomeric properties, in terms of tension set, increased with increasing levels of MNR in the blends. This may be attributed to decreasing trends in the size of vulcanized rubber particles dispersed in the PP matrix with an increasing concentration of MNR. POLYM. ENG. SCI. 46:594–600, 2006. © 2006 Society of Plastics Engineers.  相似文献   

5.
Mechanical, dynamic, thermal, and morphological properties of dynamically cured 60/40 NR/PP TPVs with various loading levels of paraffinic oil were investigated. It was found that stiffness, hardness, tensile strength, storage shear modulus, complex viscosity, glass transition temperature (Tg) of the vulcanized rubber phase, degree of crystallinity and crystalline melting temperature (Tm) of the polypropylene (PP) phase decreased with increasing loading levels of oil. This is attributed to distribution of oil into the PP and vulcanized rubber domains causing oil‐swollen amorphous phase and vulcanized rubber domains. An increasing trend of elastic response in terms of tension set and damping factor was observed in the TPVs with loading levels of oil in a range of 0–20 phr. It is supposed that a major proportion of oil was first preferably migrated into the PP phase and caused an abrupt decreasing trend of degree of crystallinity and Tm of the PP phase. The dispersed vulcanized rubber domains remained small as particles with a low degree of swelling. Increasing loading levels of oil higher than 20 phr caused a decreasing trend of elongation at break and elastomeric properties. Saturation of oil in the PP phase was expected and the excess oil was transferred to the rubber phase which thereafter caused larger swollen vulcanized rubber domains. The remaining amount of oil was able to separate as submicron pools distributed in the PP matrix. This caused lowering of Tg, Tm, crystallinity of PP phase as well as strength, elastomeric, and dynamic properties of the TPVs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Thermoplastic vulcanizates (TPVs) based on high impact polystyrene (HIPS)/styrene‐butadiene rubber (SBR) blends were prepared by dynamic vulcanization technique. The rheological, mechanical and morphological properties of the dynamically vulcanized blends were investigated systematically. As determined by capillary rheometer, the apparent viscosity of the blends decreases as the shear rate increases, indicating obvious pseudoplastic behavior. At low shear rate, the apparent viscosity of these blends is considerably higher than that of neat HIPS and decreases with the increase of HIPS concentration. The increase of HIPS content in the dynamically vulcanized blends contributes to the increase of tensile strength and hardness properties, while elongation at break and tensile set at break reach a maximum at 30 and 50 wt % of the HIPS content, respectively. The etched surfaces of the HIPS/SBR TPVs were investigated using field‐emission scanning electron microscopy, the morphological study reveals continuous HIPS phase and finely dispersed SBR elastomeric phase in the TPVs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Commonly used dicumyl peroxide (DCP) in combination with coagent, triallyl cyanurate (TAC), as a crosslinking agent is well acceptable for dynamically vulcanized rubber phase of thermoplastic vulcanizates (TPVs). However, it generally produces volatile decomposition products, which cause a typical unpleasant smell and a blooming phenomenon. In this work, influence of two types of multifunctional peroxides: 2,4‐diallyloxy‐6‐tert‐butylperoxy‐1,3,5‐triazine (DTBT) and 1‐(2‐tert‐butylperoxyisopropyl)‐3‐isopropenyl benzene (TBIB), on properties of TPVs based on epoxidized natural rubber (ENR)/polypropylene (PP) blends were investigated. The conventional peroxide/coagent combinations, i.e., DCP/TAC and tert‐butyl cumyl peroxide (TBCP)/α‐methyl styrene (α‐MeS) were also used to prepare the TPVs for a comparison purpose. The TPVs with multifunctional peroxide, DTBT, provided good mechanical properties and phase morphology of small dispersed vulcanized rubber domains in the PP matrix which were comparable with the DCP/TAC cured TPVs. However, the TPVs with TBIB/α‐MeS and TBCP/α‐MeS showed comparatively low values of the tensile properties as well as rather large phase morphology. The results were interpreted by three main factors: the kinetic aspects of the various peroxides, solubility parameters of respective peroxide/coagent combinations in the ENR and PP phases, and the tendency to form unpleasantly smelling byproducts. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Thermoplastic elastomers (TPEs) based on dynamically cured epoxidized natural rubber/high‐density polyethylene (ENR/HDPE) blends were prepared. Influence of the process oil, blend proportion, and curing systems were investigated. It was found that the oil‐extended thermoplastic vulcanizates (TPVs) exhibited better elastomeric properties and improved ease of the injection process. Increasing the proportion of ENR caused increasing elastic response of elongation at break, tension set properties, and tan δ. It was also found that the TPV treated with phenolic resin exhibited superior mechanical properties and the smallest vulcanized rubber domains. The TPV treated with the conventional peroxide co‐agent curing system showed superior strength properties but had poor elastomeric properties. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

9.
Epoxidized natural rubber (ENR) with a level of epoxide groups of 20 mol % was prepared via the performic epoxidation method. It was then used to blend with high‐density polyethylene (HDPE) at various blend ratios. Three types of blend compatibilizers were prepared. These included a graft copolymer of HDPE and maleic anhydride (MA; i.e., HDPE‐g‐MA) and two types of phenolic modified HDPEs using phenolic resins SP‐1045 and HRJ‐10518 (i.e., PhSP‐PE and PhHRJ‐PE), respectively. We found that the blend with compatibilizer exhibited superior tensile strength, hardness, and set properties to that of the blend without compatibilizer. The ENR and HDPE interaction via the link of compatibilizer molecules was the polar functional groups of the compatibilizer with the oxirane groups in the ENR molecules. Also, another end of the compatibilizer molecules (i.e., HDPE segments) was compatibilizing with the HDPE molecules in the blend components. The blend with compatibilizer also showed smaller phase morphology than the blend without compatibilizer. Among the three types of the blend compatibilizer, HDPE‐g‐MA provided the blend with the greatest strength and hardness properties but the lowest set properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Epoxidized natural rubbers (ENRs) with epoxide levels of 10, 20, 30, 40, and 50 mol % were prepared. The ENRs were later blended with poly(methyl methacrylate) (PMMA) with various blend formulations. The mixing torque of the blends was observed. The torque increased as the PMMA contents and epoxide molar percentage increased in the ENR molecules. Furthermore, the shear stress and shear viscosity of the polymer blends in the molten state increased as the ENR content and epoxide molar percentage increased in the ENR molecules. Chemical interactions between polar groups in the ENR and PMMA molecules might be the reason for the increases in the torque, shear stress, and viscosity. All the ENR/PMMA blends exhibited shear‐thinning behavior. This was observed as a decrease in the shear viscosity with an increase in the shear rate. The power‐law index of the blends decreased as the ENR contents and epoxide molar percentage increased in the ENR molecules. However, the consistency index (or zero shear viscosity) increased as the ENR contents and epoxide molar percentage increased. A two‐phase morphology was observed with scanning electron microscopy. The small domains of the minor components were dispersed in the major phase. For the determination of blend compatibility, two distinct glass‐transition‐temperature (Tg) peaks from the tan δ/temperature curves were found. Shifts in Tg to a higher temperature for the elastomeric phase and to a lower temperature for the PMMA phase were observed. Therefore, the ENR/PMMA blends could be described as partly miscible blends. According to the thermogravimetry results, the decomposition temperatures of the blends increased as the levels of ENR and the epoxide molar percentage increased. The chemical interactions between the different phases of the blends could be the reason for the increase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3561–3572, 2004  相似文献   

11.
Dynamically cured 60/40 NR/HDPE blends with various amounts of phenolic curative were prepared in an internal mixer at 160°C. A simple blend (i.e., the blend without curative) was also prepared using the same materials and blend proportion for comparison purposes. Mechanical, dynamic, and morphological properties; swelling resistance and crosslink density of the blends were investigated. It was found that the thermoplastic vulcanizates (TPVs) gave superior mechanical and dynamic properties than the simple blend. Furthermore, the mechanical properties in terms of elongation at break, modulus and tensile strength and elastic response in dynamic test in terms of storage modulus increased with increased loading amount of the curative. The complex viscosity also increased but the tan δ and tension set decreased with increased loading level of the curative. The crosslink density of the TPVs was estimated based on the elastic shear modulus. It was found that the crosslink density of the blends increased with increased loading levels of the curative while the degree of swelling decreased. This correlated well with the trend of mechanical and dynamic properties. SEM micrographs were used to confirm the level of mechanical and dynamic properties. It was found that the simple blend at a given blend ratio exhibited co‐continuous phase morphology. However, the TPVs showed micron scale of vulcanized rubber domains dispersed in a continuous HDPE matrix. The size of vulcanized rubber domains decreased with increasing amounts of the curative. This led to greater interfacial adhesion between the phase and hence superior mechanical and dynamic properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
《Polymer Composites》2017,38(6):1151-1157
Epoxidized natural rubbers (ENRs) with three different epoxide contents (i.e., 20, 35, and 50 mol% indicated as ENR20, ENR35, and ENR50, respectively) were prepared. They were then reinforced with 3‐methyacryloxypropyl trimethoxysilane‐modified nanosilica (MPTS‐SiO2). Influence of epoxide level in ENR molecules on morphological, mechanical, and dynamic mechanical properties of the ENR nanocomposites was investigated. The scanning electron microscopy results revealed larger agglomerates of SiO2 were found in the ENR composites with higher epoxide content. Furthermore, the strength and moduli of the ENR nanocomposites increased with increasing epoxide content. However, the optimal tensile strength and elongation at break were observed in the nanocomposites with the intermediate level of epoxide contents. The correlation between the strength properties and the interfacial silica‐matrix adhesion indicated that the maximum interfacial adhesion of the nanocomposites was observed in the nanocomposite with ENR35. Also, DMA results indicated stronger interaction between ENR35 and MPTS‐SiO2 due to higher storage modulus. POLYM. COMPOS., 38:1151–1157, 2017. © 2015 Society of Plastics Engineers  相似文献   

13.
Epoxidized natural rubbers (ENR‐25 and ENR‐45) were prepared using the performic epoxidation method. Two‐component (ENR–cassava starch) and three‐component (ENR–NR–cassava starch) blends were prepared. ENR‐25 and ENR‐45 were blended with various quantities of gelatinized cassava starch in the latex state. The pure ENR exhibited lower shear stress and shear viscosity than those of the blends with cassava starch. Furthermore, the shear stress and shear viscosity were increased with an increase in the cassava starch concentration. The chemical interaction between the epoxide groups in the ENR and the hydroxyl groups in the cassava starch molecules might be the reason for the increasing trends of the shear stress and shear viscosity. The blends are classified as compatible blends because of the strong chemical bonding between different phases. SEM micrographs were used to clarify the compatibility. Power law behavior with pluglike flow profiles was observed for all sets of ENR–NR–cassava starch blends. Very low power law index values (<0.34) and highly pseudoplastic fluid behavior were also observed. The log additive rule was applied to plots of zero shear viscosity (consistency index) and the shear viscosity versus the concentration of ENR‐25. Positive deviation blending was observed, which indicates compatible blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1752–1762, 2004  相似文献   

14.
Epoxidized natural rubber (ENR) was prepared via in situ epoxidation from high ammonia concentrated natural rubber latex with formic acid and hydrogen peroxide in the presence of a surfactant at 50°C for 4, 8, and 12 h. The obtained ENRs containing 20, 45, and 65 mol % of expoxide groups were denoted ENR20, ENR45, and ENR65, respectively. The differential scanning calorimetric study revealed that they exhibited higher glass transition temperatures than that of natural rubber (?62.4°C), at ?38.2°C for ENR20, ?27.8°C for ENR45, and ?19.7°C for ENR 65. It was clearly seen that their glass transition temperatures increased as the amount of epoxide groups increased. The prepared ENRs were compounded and vulcanized to prepare test specimens for determination of oil resistance and various physical properties. It was found that the swelling of ENRs in oils was substantially less than that of natural rubber. The oil resistance of ENR65 was comparable to that of nitrile rubber, commonly used as oil resistant rubber. ENR65 also showed higher hardness than other ENRs. Contrarily, ENR20 possessed superior tensile strength and compression set when compared with other ENRs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3948–3955, 2006  相似文献   

15.
In this study, the morphologies of three types of acrylonitrile–butadiene rubber (NBR)/polypropylene (PP) thermoplastic vulcanizates (TPVs) (with an NBR/PP blend ratio of 70/30) were compared. The TPVs were (1) an ultrafine fully vulcanized acrylonitrile–butadiene rubber (UFNBR)/PP TPV made by the mechanical blending of UFNBR with PP, (2) a dynamically vulcanized NBR/PP TPV without the compatibilization of maleic anhydride grafted polypropylene (MP) and amine‐terminated butadiene–acrylonitrile copolymer (ATBN), and (3) a dynamically vulcanized NBR/PP TPVs with the compatibilization of MP and ATBN. The influence of the compatibility therein on the size of the dispersed vulcanized NBR particles and the crystallization behavior of the PP in the TPVs and the resultant properties are also discussed. As indicated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, polarizing microscopy, dynamic mechanical thermal analysis, and rheological and mechanical testing, the compatibility was significantly improved by the reactive compatibilization of MP and ATBN, which led to a uniform and fine morphology. The compatibilization increased the crystallization rate and reduced the size of the spherulites of PP. On the other hand, it was found that the dispersed vulcanized NBR particles lowered the degree of crystallinity. The better the compatibility of the blend was, the lower the degree of crystallinity and the storage modulus were, but the higher the loss factor and the processing viscosity were. All TPVs showed almost the same oil resistance, but the TPV prepared with reactive compatibilization had the best mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
We have investigated the mechanical and morphological properties of un‐vulcanized and dynamically vulcanized ethylene propylene diene terpolymer/polypropylene (EPDM/PP) thermoplastic elastomers prepared under various processing conditions and possessing various compositions. After melt‐blending EPDM and PP resins twice in a twin‐screw extruder, the values of tensile strength (σf) of the un‐vulcanized EPDM/PP samples were at most equal to that of the pure EPDM specimen, but were much lower than those of the pure PP specimens. The elongations at break (εf) of the un‐vulcanized EPDM/PP samples were, however, dramatically higher than those of their respective virgin PP resins, and they improved significantly upon increasing the shear viscosity (ηs) of the PP resins. The tensile properties of the dynamically vulcanized EPDM/PP samples were significantly better than those of the corresponding un‐vulcanized EPDM/PP specimens. Similar to the behavior of the un‐vulcanized EPDM/PP specimens, the tensile properties of the dynamically vulcanized EPDM/PP specimens were optimized when prepared at a screw rate of 115 rpm. Morphological analysis revealed that the un‐vulcanized and dynamically vulcanized EPDM/PP specimens both featured many EPDM domains finely dispersed in continuous PP matrices. Such domains were present on the surfaces of the dynamically vulcanized EPDM/PP specimens; the relative sizes of the vulcanized EPDM domains were minimized when the vulcanized EPDM/PP specimens were prepared at the optimal screw rate (115 rpm). In fact, under these conditions, the average sizes of the vulcanized EPDM domains decreased upon increasing the values of ηs of the PP resins used to prepare the vulcanized EPDM/PP specimens. To understand these interesting tensile and morphological properties of the un‐vulcanized and dynamically vulcanized EPDM/PP specimens, we measured the rheological properties of the base polymers and performed energy‐dispersive x‐ray (EDX) analyzes of the compositions of the un‐vulcanized and dynamically vulcanized EPDM/PP specimens. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Ethylene vinyl acetate (EVA)/epoxidized natural rubber (ENR) blends containing 10 and 30 wt % ENR were prepared by using an internal mixer. Five different types of curing systems were employed: dicumyl peroxide (DCP), sulfur (S), phenolic resin (Ph), DCP + S, and DCP + Ph. DCP could crosslink with both EVA and ENR while S and Ph were curing agents for ENR. The DCP system provided the lowest tensile properties and tear strength because of low crosslinking in ENR phase. Addition of sulfur or phenolic resin increased the mechanical properties due to a better vulcanization of the rubber phase. The mechanical properties of the blends decreased with increasing ENR content. The rubber particle size in the blends containing 30% ENR played a more important role in the mechanical properties than the blends containing 10% ENR. ENR particle size did not affect heat shrinkability of EVA and a well vulcanized rubber phase was not required for high heat shrinkage. Furthermore, heat shrinkage of the blends slightly changed as the ENR content increased for all curing systems. With regard to the mechanical properties and heat shrinkability, the most appropriate curing system was DCP + Ph and in the case the 10 wt % ENR content produced a more favorable blend. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
Three types of conductive thermoplastic vulcanizates (TPVs) were prepared by blending polypropylene (PP), carbon nanotubes (CNT), and carboxylic acrylonitrile butadiene ultrafine full‐vulcanized powdered rubber (xNBR‐UFPR). The CNT locations were different in these three types of TPVs, i.e., CNTs were localized in PP matrix, in the xNBR‐UFPR phase, or mainly in the interface. It had been found that TPV with CNTs localized mainly in the interface had the lowest conductive percolation threshold among these three types of TPVs. The volume resistivity of the TPV with 2 phr CNTs was as small as 220 Ω?cm. Moreover, the conductive TPV possessed good mechanical properties. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Thermoplastic natural rubber based on polyamide‐12 (PA‐12) blend was prepared by melt blending technique. Influence of blending techniques (i.e., simple blend and dynamic vulcanization) and types of natural rubber (i.e., unmodified natural rubber (NR) and epoxidized natural rubber (ENR)) on properties of the blends were investigated. It was found that the simple blends with the proportion of rubber ~ 60 wt % exhibited cocontinuous phase structure while the dynamically cured blends showed dispersed morphology. Furthermore, the blend of ENR exhibited superior mechanical properties, stress relaxation behavior, and fine grain morphology than those of the blend of the unmodified NR. This is attributed to chemical interaction between oxirane groups in ENR molecules and polar functional groups in PA‐12 molecules which caused higher interfacial adhesion. It was also found that the dynamic vulcanization caused enhancement of strength and hardness properties. Temperature scanning stress relaxation measurement revealed improvement of stress relaxation properties and thermal resistance of the dynamically cured ENR/PA‐12 blend. This is attributed to synergistic effects of dynamic vulcanization of ENR and chemical reaction of the ENR and PA‐12 molecules. Furthermore, the dynamically cured ENR/PA‐12 blend exhibited smaller rubber particles dispersed in the PA‐12 matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Dynamic vulcanized thermoplastic polyurethane (TPU)/methyl vinyl silicone rubber (MVQ) thermoplastic vulcanizates (TPVs) were prepared in torque rheometer. The influence of the type and amount of peroxide crosslinking agent on the mechanical properties, thermal stability, micromorphology and melt flowability was systematically investigated. The results showed that the mechanical properties of the TPVs vulcanized by 2,5-dimethyl-2,5-di (tert-butyl peroxy) hexane (DBPH) first increased and then decreased with increasing the peroxide amount, while for dicumyl peroxide (DCP) vulcanizing system the mechanical properties slowly increased. Besides, the comprehensive mechanical properties vulcanized by DBPH were better than those of DCP group. The results of the thermogravimetric analysis showed that the TPVs vulcanized by DBPH had better heat stability, corresponding to the excellent thermo-oxidative aging performance and the 38% increase in tensile strength after aging. In addition, the MVQ rubber particles showed better dispersing performance for DBPH vulcanizing system. The melt flow rate of the TPVs showed a linear relationship with increasing DBPH dosage and became worse after the amount of crosslinking agent exceeded 1.5 phr. By comprehensive comparison, the TPVs have better performance when use peroxide DBPH as the crosslinking agent and the dosage is 1.5 phr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号