首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epoxidized natural rubber (ENR) was prepared using the performic epoxidation method. TPVs based on ENR/PP blends were later prepared by melt‐mixing processes via dynamic vulcanization. The effects of blend ratios of ENR/PP, types of compatibilizers, and reactive blending were investigated. Phenolic modified polypropylene (Ph‐PP) and graft copolymer of maleic anhydride on polypropylene molecules (PP‐g‐MA) were prepared and used as blend compatibilizers and reactive blending components of ENR/Ph‐PP and ENR/PP‐g‐MA blends. It was found that the mixing torque, apparent shear stress and apparent shear viscosity increased with increasing levels of ENR. This is attributed to the higher viscosity of the pure ENR than that of the pure PP. Furthermore, there was a higher compatibilizing effect because of the chemical interaction between the polar groups in ENR and PP‐g‐MA or Ph‐PP. Mixing torque, shear flow properties (i.e., shear stress and shear viscosity) and mechanical properties (i.e., tensile strength, elongation at break, and hardness) of the TPVs prepared by reactive blending of ENR/Ph‐PP and ENR/PP‐g‐MA were lower than that of the samples without a compatibilizer. However, the TPVs prepared using Ph‐PP and PP‐g‐MA as compatibilizers exhibited higher values. We observed that the TPVs prepared from ENR/PP with Ph‐PP as a compatibilizer gave the highest rheological and mechanical properties, while the reactive blending of ENR/PP exhibited the lowest values. Trend of the properties corresponds to the morphology of the TPVs. That is, the TPV with Ph‐PP as a blend compatibilizer showed the smallest rubber particles dispersed in the PP matrix, while the reactive blending of ENR/PP‐g‐MA showed the largest particles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4729–4740, 2006  相似文献   

2.
Commonly used dicumyl peroxide (DCP) in combination with coagent, triallyl cyanurate (TAC), as a crosslinking agent is well acceptable for dynamically vulcanized rubber phase of thermoplastic vulcanizates (TPVs). However, it generally produces volatile decomposition products, which cause a typical unpleasant smell and a blooming phenomenon. In this work, influence of two types of multifunctional peroxides: 2,4‐diallyloxy‐6‐tert‐butylperoxy‐1,3,5‐triazine (DTBT) and 1‐(2‐tert‐butylperoxyisopropyl)‐3‐isopropenyl benzene (TBIB), on properties of TPVs based on epoxidized natural rubber (ENR)/polypropylene (PP) blends were investigated. The conventional peroxide/coagent combinations, i.e., DCP/TAC and tert‐butyl cumyl peroxide (TBCP)/α‐methyl styrene (α‐MeS) were also used to prepare the TPVs for a comparison purpose. The TPVs with multifunctional peroxide, DTBT, provided good mechanical properties and phase morphology of small dispersed vulcanized rubber domains in the PP matrix which were comparable with the DCP/TAC cured TPVs. However, the TPVs with TBIB/α‐MeS and TBCP/α‐MeS showed comparatively low values of the tensile properties as well as rather large phase morphology. The results were interpreted by three main factors: the kinetic aspects of the various peroxides, solubility parameters of respective peroxide/coagent combinations in the ENR and PP phases, and the tendency to form unpleasantly smelling byproducts. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Epoxidized natural rubbers (ENRs) with epoxide levels of 10, 20, 30, 40 and 50 mol % were prepared. The ENRs were later used to prepare thermoplastic vulcanizates (TPVs) by blending them with poly(methyl methacrylate) (PMMA) using various formulations. Dynamic vulcanization, using sulfur as a vulcanizing agent, was performed during the mixing process. The mixing torque increased as the ENR contents and epoxide molar percentage increased. This was because of an increasing chemical interaction between the polar groups of the blend components, particularly at the interface between the elastomeric and thermoplastic phases. The ultimate tensile strength of the TPVs with ENR‐20 was high because of strain‐induced crystallization. ENRs with epoxide levels >30 mol % exhibited an increase of tensile strength because of increasing levels of chemical interaction between the molecules and the different phases. The hardness of the TPVs also increased with increased epoxide levels but decreased with increased contents of ENRs. Two morphology phases with small domains of vulcanized ENR particles dispersed in the PMMA matrix were observed from scanning electron microscopy micrographs. The TPVs based on ENR‐20 and ENR‐50 showed smaller dispersed rubber domains than those of the other types of ENRs. Furthermore, the size of the vulcanized rubber domain decreased with increasing amounts of PMMA in the blends. The decomposition temperature of the TPVs also increased as both the levels of ENRs in the blends and the epoxide molar percentage increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1251–1261, 2005  相似文献   

4.
环氧化天然橡胶的研究与应用   总被引:5,自引:0,他引:5  
何兰珍  杨丹 《弹性体》2005,15(5):60-65
环氧化天然橡胶(ENR)是由NR化学改性而成,笔者阐述了环氧化天然橡胶制备原理和方法、环氧化天然橡胶性能及应用研究、环氧化天然橡胶共混改性研究,其中包括ENR与PVC共混体系的研究、ENR其它共混体系的研究和ENR改性的研究.  相似文献   

5.
A new class of blend membranes from blends of nitrile rubber (NBR) and epoxidized natural rubber (ENR) has been prepared and their morphology, miscibility, mechanical, and viscoelastic properties have been studied. The ebonite method was used to study the blend morphology of the membranes. The morphology of the blends indicated a two‐phase structure in which the minor phase is dispersed as domains in the major continuous phase. The performance of NBR/ENR blend membranes has been studied from the mechanical measurements. The viscoelastic behavior of the blends has been analyzed from the dynamic mechanical data. An attempt was made to relate the viscoelastic behavior with the morphology of the blends. Various composite models have been used to predict the experimental viscoelastic data. The area under the linear loss modulus curve was larger than that obtained by theoretical group contribution analysis. The homogeneity of the system was further evaluated by Cole–Cole analysis. Finally, a master curve for the modulus of the blend was generated by applying the time–temperature superposition principle. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1561–1573, 2005  相似文献   

6.
Improvement of the properties of rubber nanocomposites is a challenge for the rubber industry because of the need for higher performance materials. Addition of a nanometer‐sized filler such as silicon carbide (SiC) to enhance the mechanical properties of rubber nanocomposites has rarely been attempted. The main problem associated with using SiC nanoparticles as a reinforcing natural rubber (NR) filler compound is poor dispersion of SiC in the NR matrix because of their incompatibility. To solve this problem, rubber nanocomposites were prepared with SiC that had undergone surface modification with azobisisobutyronitrile (AIBN) and used as a filler in blends of epoxidized natural rubber (ENR) and natural rubber. The effect of surface modification and ENR content on the curing characteristics, dynamic mechanical properties, morphology and heat buildup of the blends were investigated. The results showed that modification of SiC with AIBN resulted in successful bonding to the surface of SiC. It was found that modified SiC nanoparticles were well dispersed in the ENR/NR matrix, leading to good filler‐rubber interaction and improved compatibility between the rubber and filler in comparison with unmodified SiC. The mechanical properties and heat buildup when modified SiC was used as filled in ENR/NR blends were improved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45289.  相似文献   

7.
Epoxidized natural rubbers (ENR‐25 and ENR‐45) were prepared using the performic epoxidation method. Two‐component (ENR–cassava starch) and three‐component (ENR–NR–cassava starch) blends were prepared. ENR‐25 and ENR‐45 were blended with various quantities of gelatinized cassava starch in the latex state. The pure ENR exhibited lower shear stress and shear viscosity than those of the blends with cassava starch. Furthermore, the shear stress and shear viscosity were increased with an increase in the cassava starch concentration. The chemical interaction between the epoxide groups in the ENR and the hydroxyl groups in the cassava starch molecules might be the reason for the increasing trends of the shear stress and shear viscosity. The blends are classified as compatible blends because of the strong chemical bonding between different phases. SEM micrographs were used to clarify the compatibility. Power law behavior with pluglike flow profiles was observed for all sets of ENR–NR–cassava starch blends. Very low power law index values (<0.34) and highly pseudoplastic fluid behavior were also observed. The log additive rule was applied to plots of zero shear viscosity (consistency index) and the shear viscosity versus the concentration of ENR‐25. Positive deviation blending was observed, which indicates compatible blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1752–1762, 2004  相似文献   

8.
研究了辅助增塑剂环氧大豆油对以偏苯三甲酸三辛酯为主增塑剂的丁腈橡胶/聚丙烯热塑性硫化胶的硫化过程、耐油性能及流变性能的影响。结果表明,加入少量环氧大豆油,较单独使用偏苯三甲酸三辛酯可制备出具有更低硬度、高耐油性和流动性好的热塑性硫化胶。环氧大豆油可使丁腈橡胶/聚丙烯热塑性硫化胶制品的表面更加光滑,保护其不被氧化,令其色泽更加鲜艳和透明。  相似文献   

9.
增塑剂对丁腈橡胶/聚丙烯热塑性硫化橡胶性能的影响   总被引:3,自引:0,他引:3  
研究了邻苯二甲酸二辛酯(DOP)、偏苯三酸三(2-乙基己酯)(TOTM)、聚酯和邻苯二甲酸烷基.苄酯4种增塑剂对丁腈橡胶(NBR)聚/丙烯(PP)热塑性硫化胶(TPV)邵尔A硬度、耐油性能和流变性能的影响,并用透射电镜分析了4种增塑剂对NBR/PP TPV相态结构的影响。结果表明,TOTM的增塑效果最好,可制备出低硬度、高耐油和流动性好的NBR/PP TPV,并且分散相的粒径小、大小均匀;随着TOTM用量的增加,NBR/PP TPV的邵尔A硬度降低,流动性提高,但TOTM用量不宜超过50份。  相似文献   

10.
对环氧化天然橡胶 (ENR)及其胶乳 (ENRL)进行了为期 2年的贮存试验 ,考察其外观和主要物理性能的变异状况 ,探讨了这些性状变异的机理 ,了解到ENR和ENRL原材料长期贮存 ,其外观无明显变化。  相似文献   

11.
Maleated natural rubbers (MNRs) were prepared using various levels of maleic anhydride (MA) at 4, 6, 8, 10, and 12 phr. Dynamically cured 60/40 MNR/PP blends with phenolic‐modified polypropylene (Ph‐PP) compatibilizer at a loading level of 5 wt % of PP were prepared by melt mixing process using sulfur vulcanization system. The influence of the level of MA on properties of the thermoplastic vulcanizates (TPVs) was studied. It was found that the mixing torque, apparent shear stress, shear viscosity, tensile strength, and hardness properties increased with increasing levels of the MA or grafted succinic anhydride groups in the MNR molecules. This is attributed to an increase in chemical interaction and reaction between methylol groups in the Ph‐PP molecules and polar functional groups in the MNR molecules upon increasing levels of the grafted succinic anhydride groups. As a consequence, compatibilizing block copolymers of MNR and PP blocks were formed. The block copolymers were capable of compatibilizing with MNR and PP blend components via the respective blocks. Recyclability of the MNR/PP TPVs was also studied. It was found that, after processing through a number of cycles by injection molding and extrusion processing, the TPV exhibited marginal decreases in mechanical properties. This corresponded to slightly increasing size of the dispersed vulcanized rubber domains. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The objective of this work was to determine the effect of the epoxide content in epoxidized natural rubber (ENR) on the miscibility and compatibility with poly(lactic acid) (PLA) in prepared PLA/ENR blends. PLA was blended with 10 wt% of ENRs (epoxidized at 10, 15, 20, and 25 mol%). The presented study showed that the in situ graft copolymer, PLA-g-ENR, was formed during melt blending in the blends containing 10 and 15 mol% ENR. This work is the initial study showing the presence of PLA-g-ENR in the blends by 1H-NMR and 13C-NMR. PLA-g-ENR acted as a compatibilizer, producing a partially miscible blend, indicated by an inward shift of the α-transition temperatures of PLA and ENR in the blends. PLA-g-ENR also greatly reduced the particle size of ENR and increased the impact strength, tensile strength, and elongation at break of the blends. The epoxide content of ENR changed deformation mechanisms of the blends.  相似文献   

13.
环氧化天然橡胶共混物与复合材料   总被引:1,自引:1,他引:1  
综述了国内外环氧化天然橡胶(ENR)共混物与复合材料的研究现状和应用发展趋势。介绍了几种环氧化天然橡胶共混物与复合材料的优点及影响其性能的因素。  相似文献   

14.
Onium ion‐modified montmorillonite (organoclay) was melt compounded with natural rubber (NR) in an internal mixer and cured by using a conventional sulfuric system. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) was used in 10 parts per hundred rubber (phr) as a compatibilizer. The effect of organoclay with different filler loading up to 10 phr was studied. Cure characteristics were determined by a Monsanto MDR2000 rheometer, whereas the tensile, compression, and tear properties of the nanocomposites were measured according to the related ASTM standards. While the torque maximum and torque minimum increased slightly, both scorch time and cure time reduced with the incorporation of organoclay. The tensile strength, elongation at break, and tear properties went through a maximum (at about 2 phr) as a function of the organoclay content. As expected, the hardness, moduli at 100% (M100) and 300% elongations (M300) increased continuously with increasing organoclay loading. The compression set decreased with incorporation of organoclay. The dispersion of the organoclay in the NR stocks was investigated by X‐ray diffraction and transmission electron microscopy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1083–1092, 2006  相似文献   

15.
In this study, cerium oxide nanoparticles (nanoceria, CeNP) were used as a nanofiller in epoxidized natural rubber with varying epoxide levels, including 25% epoxidation (ENR-25) and 50% epoxidation (ENR-50). Co-precipitation methods were employed to synthesize a pure phase of CeNP with an average particle size of 11.4 ± 2.0 nm. CeNP was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy. The effect of CeNP loading with 0–3 parts per hundreds of rubber (phr) on the properties of rubber nanocomposites was explored. ENR-25 nanocomposites with 1 phr of CeNP exhibited higher tensile strength and elongation at break compared to ENR-50 nanocomposites. These findings correspond to a lower Payne effect, improved scorch safety, and better processability. The strongest and most effective CeO2–ENR interactions via silane linkages are expected to outperform sulfur crosslinking in ENR-25 having 1 phr of CeNP. Microstructural evaluation of an ENR-25 sample containing 1 phr of CeNP indicated well-distributed nanofillers in the ENR-25 matrix, indicating that CeNP and ENR-25 appeared to be well-matched. Hardness of all ENR nanocomposites increased with CeNP loading. The cracking resistance, creep properties, and thermal stability of rubber nanocomposites were unaffected by addition of CeNP in the ENR-25 and ENR-50 samples.  相似文献   

16.
Thermoplastic natural rubber based on polyamide‐12 (PA‐12) blend was prepared by melt blending technique. Influence of blending techniques (i.e., simple blend and dynamic vulcanization) and types of natural rubber (i.e., unmodified natural rubber (NR) and epoxidized natural rubber (ENR)) on properties of the blends were investigated. It was found that the simple blends with the proportion of rubber ~ 60 wt % exhibited cocontinuous phase structure while the dynamically cured blends showed dispersed morphology. Furthermore, the blend of ENR exhibited superior mechanical properties, stress relaxation behavior, and fine grain morphology than those of the blend of the unmodified NR. This is attributed to chemical interaction between oxirane groups in ENR molecules and polar functional groups in PA‐12 molecules which caused higher interfacial adhesion. It was also found that the dynamic vulcanization caused enhancement of strength and hardness properties. Temperature scanning stress relaxation measurement revealed improvement of stress relaxation properties and thermal resistance of the dynamically cured ENR/PA‐12 blend. This is attributed to synergistic effects of dynamic vulcanization of ENR and chemical reaction of the ENR and PA‐12 molecules. Furthermore, the dynamically cured ENR/PA‐12 blend exhibited smaller rubber particles dispersed in the PA‐12 matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Onium modified montmorillonite (organoclay) was compounded with natural rubber (NR) in an internal mixer and cured by using a conventional sulfuric system. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) in 10 parts per hundred rubber (phr) was used as a compatibilizer in this study. For comparison purposes, two commercial fillers: carbon black (grade N330) and silica (grade vulcasil‐S) were used. Cure characteristics were carried out on a Monsanto MDR2000 Rheometer. Organoclay filled vulcanizate showed the lowest values of torque maximum, torque minimum, scorch, and cure times. The kinetics of cure reaction showed organoclay could behave as a cocuring agent. The mechanical testing of the vulcanizates involved the determination of tensile and tear properties. The improvement of tensile strength, elongation at break, and tear properties in organoclay filled vulcanizate were significantly higher compared to silica and carbon black filled vulcanizates. In terms of reinforcing efficiency (RE), organoclay exhibited the highest stiffness followed by silica and carbon black filled vulcanizates. Scanning electron microscopy revealed that incorporation of various types of fillers has transformed the failure mechanism of the resulting NR vulcanizates compared to the gum vulcanizates. Dynamic mechanical thermal analysis (DMTA) revealed that the stiffness and molecular relaxation of NR vulcanizates are strongly affected by the filler–rubber interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2438–2445, 2004  相似文献   

18.
Studies of the dilute solution capillary viscosity and moisture sorption of commercial samples of epoxidized natural rubber (ENR 50) were carried out. Dilute solution viscometry of ENR 50 solutions was conducted in xylene, tetrahydrofuran, and methyl ethyl ketone solvents and the degradation due to shearing and oxidation for this rubber was followed. At average elevated temperatures and high relative humidities, epoxidized natural rubber ENR 50 shows high moisture sorption. Moisture sorption measurements at 100% RH and 34°C followed by desorption show near equilibrium moisture intake of 3.402–3.661 g H2O/100 g rubber, which agrees reasonably well with the estimated value of 4.108 g H2O/100 g ENR 50. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1633–1644, 1999  相似文献   

19.
Linear low‐density polyethylene/soya powder blends were prepared by using an internal mixer at 150°C. The soya powder content ranged from 5 to 40 wt %. Epoxidized natural rubber with 50 mol % epoxidation (ENR 50) was added as a compatibilizer. The blends were irradiated by electron beam (EB) at a constant dose of 30 kGy. The changes in gel fraction, tensile properties, morphological and thermal properties of the samples were investigated. The gel content increased after EB irradiation. However, the increment of gel content was hindered by increasing soya powder content. The tensile strength and Young's modulus of the blends were increased by EB whereas the elongation at break decreased. The tensile fracture surface also support the reduction of elongation at break by EB irradiation. Further analysis on the irradiated blends using Fourier transform infrared spectra indicated an increase of oxygenated product after undergoing EB irradiation. The differential scanning calorimetry result indicated that the melting temperature of the blends decreased after EB irradiation whereas the crystallinity increased. EB irradiation also enhanced the thermal stability of the blends as indicated by thermogravimetric analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The dependence of peel strength and shear strength of epoxidized natural rubber (ENR‐50)‐based pressure sensitive adhesive on molecular weight and rate of testing was investigated using coumarone‐indene as the tackifying resin. Toluene and polyethylene terephthalate were used as the solvent and substrate respectively, throughout the study. A SHEEN hand coater was used to coat the adhesive on the substrate at a coating thickness of 120 μm. All the adhesion properties were determined by a Llyod Adhesion Tester operating at different rates of testing. Result shows that peel strength and shear strength increases up to an optimum molecular weight of 4.2 × 104 of ENR 50. For peel strength, the observation is attributed to the combined effects of wettability and mechanical strength of rubber at the optimum molecular weight, whereas for the shear strength, it is ascribed to the optimum cohesive and adhesive strength which enhances the shear resistance of the adhesive. Peel strength and shear strength also increases with increase in rate of testing, an observation which is associated to the viscoeslastic response of the adhesive. DSC and FTIR study confirms the miscibility of tackifier and the ENR 50. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号