首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parison dimensions in extrusion blow molding are affected by two phenomena, swell due to stress relaxation and sag drawdown due to gravity. It is well established that the parison swell and sag are strongly dependent on the die geometry and the operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of the die geometry, the operating conditions, and the resin properties on the parison dimensions using high density polyethylene. Parison programming with a moving mandrel and the flow rate evolution in intermittent extrusion are also considered. The parison dimensions are measured experimentally by using the pinch-off mold technique on two industrial scale machines. The finite element software BlowParison® developed at IMI is used to predict the parison formation, taking into account the swell, sag, and nonisothermal effects. The comparison between the predicted parison/part dimensions and the corresponding experimental data demonstrates the efficiency of numerical tools in the prediction of the final part thickness and weight distributions. POLYM. ENG. SCI., 47:1–13, 2007. © 2006 Society of Plastics Engineers  相似文献   

2.
An image analysis technique has been developed to measure diameter and thickness distribution of a parison during the extrusion stage in blow molding. The system operates on-line during extrusion on any commercial blow-molding machine. The system has been developed to help development of new blow-molding resins by increasing our understanding of the connection between polymer structure and parison shape. The system can also be used for die design during optimization of a production process. The combined use of experimental design and multivariate projection techniques makes this an efficient tool for the practical processing engineer. Experiments done on three high-density polyethylene blow-molding resins show the importance of measuring the time dependence of the diameter and thickness distribution under different extrusion conditions for a given polymer. Our results show that many of the swell and sag related properties we see cannot be directly inferred from standard laboratory swell-experiments.  相似文献   

3.
Optimization of final part thickness distributions is crucial in the extrusion blow molding process in order to minimize resin usage. Prediction of part thickness distributions from basic process and material parameters would be ideal. However, attempts to do so have been unsuccessful, largely because of the inability to predict parison thickness profiles. One must therefore resort to measurement of the parison thickness profile and estimation of the final part thickness distribution by computational methods. This paper describes a new technique for the noncontact estimation of parison thickness profiles in continuous extrusion blow molding. The method accounts for sag and requires no previous knowledge of rheological data. It can be employed on-line for the purposes of process monitoring and control. The approach is based on the measurement of the parison length evolution with time during extrusion, the parison diameter profile, the flow rate, and the melt temperature gradient along the length of the parison. These parameters are utilized in conjunction with a theoretical approach that describes the extrusion of a parison under the effects of swell, sag, and extrusion into ambient conditions. Results are presented for three resins of various molecular weight distributions. The degree of sag is minimal at the top and bottom of the parison, and reaches a maximum near the center of the parison. Results are also presented to demonstrate the versatility of the method under other process conditions, such as varying flow rate, die temperature, and die gap.  相似文献   

4.
An experimental program was carried out to study the dynamics of parison swell and development in extrusion-blow molding. Two commercial blow molding grade polyethylene resins were employed in conjunction with an Impco, Model A13-R12 reciprocating screw blow molding machine equipped with a cylindrical bottle mold. Parison weight swell was measured with the aid of a parison pinch-off mold. In order to obtain more reliable and useful information regarding diameter and thickness swell of the parison and the dynamics of parison formation and development, high speed cinematography was employed. Data obtained by this technique are more reliable than results obtained with the pinch-off mold alone. They also give further insight into the phenomena of swell, sag, and parison spring back or recovery.  相似文献   

5.
The most critical stage in the extrusion blow‐molding process is the parison formation, as the dimensions of the blow‐molded part are directly related to the parison dimensions. The swelling due to stress relaxation and sagging due to gravity are strongly influenced by the resin characteristics, die geometry, and operating conditions. These factors significantly affect the parison dimensions. This could lead to a considerable amount of time and cost through trial and error experiments to get the desired parison dimensions based upon variations in the resin characteristics, die geometry, and operating conditions. The availability of a modeling technique ensures a more accurate prediction of the entire blow‐molding process, as the proper prediction of the parison formation is the input for the remaining process phases. This study considers both the simulated and the experimental effects of various high‐density polyethylene resin grades on parison dimensions. The resins were tested using three different sets of die geometries and operating conditions. The target parison length was achieved by adjusting the extrusion time for a preset die gap opening. The finite element software BlowParison® was used to predict the parison formation, taking into account the swell and sag. Good agreements were found between the predicted parison dimensions and the experimental data. POLYM. ENG. SCI., 2009. Published by Society of Plastics Engineers  相似文献   

6.
An important factor in the selection of blow molding resins for producing handled bottles is the effective diameter swell of the parison. Ideally, the diameter swell is directly related to the weight swell and would require no separate consideration. In actual practice, the existence of gravity, the finite parison drop time and the anisotropic aspects of the blow molding operation prevent reliable prediction of the parison diameter swell directly from the weight swell. The parison diameter swell is a complex function of the weight swell, the rate of swell and the melt strength. Elements of this function are presented which show the effect of extrusion rate, parison drop time and parison weight. A technique is presented which allows the estimation of local weight and diameter swell ratios. Their direct relationship is confirmed by data obtained on several blow molding resins. The relationship between weight swell and diameter swell is definitely anisotropic. A mathematical model for swell is proposed which incorporates experimentally determined rate constants and swell coefficients. Correlations are given which suggest fundamental relationships between these derived coefficients and basic variables such as resin properties or process conditions. The model's predictive capability is demonstrated by using it to back calculate parison dimensions.  相似文献   

7.
The die swell behavior of PVC melts is a manifestation of melt elasticity and is of considerable commercial as well as fundamental importance. This behavior is a critical issue in extrusion blow molding application where die swell (i.e. parison thickness) needs to be controlled. Advantageously, the addition of high molecular weight acrylic processing aids to PVC provides better die swell control, thus, improving dramatically the processability of PVC. Hence, knowledge of molecular weight variables of such acrylic processing aids is important from both the commercial and rheological point of view. Various acrylic processing aids were prepared by polymerization designed to provide systematic variation of molecular parameters. Molecular weight distribution of the polymers was characterized by GPC, and their die swell behavior in a typical PVC blow molding formulation was determined at 200°C over various range of residence times using different L/D capillary dies. The results are presented showing effects of specific molecular variables.  相似文献   

8.
A series of experiments were carried out on the parison formation stage in extrusion blow molding of high‐density polyethylene (HDPE) under different die temperature, extrusion flow rate, and parison length. The drop time of parison when it reached a given length and its swells, including the diameter, thickness, and area swells, were determined by analyzing its video images. Two back‐propagation (BP) artificial neural network models, one for predicting the length evolution of parison with its drop time, the other predicting the swells along the parison, were constructed based on the experimental data. Some modifications to the original BP algorithm were carried out to speed it up. The comparison of the predicted parison swells using the trained BP network models with the experimentally determined ones showed quite a good agreement between the two. The sum of squared error for the predictions is within 0.001. The prediction of the parison diameter and thickness distributions can be made online at any parison length or any parison drop time within a given range using the trained models. The predicted parison swells were analyzed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2230–2239, 2005  相似文献   

9.
塑料挤出吹塑的机理问题   总被引:5,自引:1,他引:4  
采用不同的方法对挤出吹塑过程的型坯成型、型坯吹胀与制品冷却三阶段的机理问题进行了研究.采用人工神经网络方法预测了受模口温度和挤出流率影响的型坯成型阶段的膨胀.利用建立起来的神经网络模型预示的膨胀与实验结果很吻合,且可在一定范围内,预示不同工艺条件下型坯的直径膨胀和壁厚膨胀,为型坯的直径和壁厚的在线控制提供了理论依据.基于薄膜近似和neo-Hookean本构关系,建立了描述型坯自由吹胀的数学模型,并通过实验方法获得了型坯吹胀的瞬态图象.  相似文献   

10.
The simulation of the parison formation process in blow molding has been studied. The flow field was divided into two regions, namely, the extrudate swell region near the die lip and the parison formation region after the exit swell. In the swell region, we predicted the swelling ratio and residual stress distribution for high Weissenberg numbers for steady planar well using the 1-mode Giesekus model. In the parison formation region, the flow is assumed to be an unsteady unaxial elongational flow including drawdown and recoverable swell and is modeled using the 10-mode Giesekus model. We calculated the time course of parison length and thickness distribution, and compare the calculation results of parison length with experimental data. It was found that the predicted values agreed rather well with the experimental values. The calculation results could especially predict the shrink-back, which is the phenomenon where the parison length becomes shorter after the cessation of extrusion, and it was found tat this was caused by the recoverable swell of the parison, which depends on the tensile stress generation in the die. Various flow rates and die geometries were studied and confirmed the reliability and usefulness of the method.  相似文献   

11.
In our previous study, we calculated the time course of parison length in the parison formation stage, but it could predict only the parison area swell. The next target in our study is to calculate the parison diameter and thickness swell. Annular extrudate swell simulation is necessary for the understanding of various kinds of swelling ratios in blow molding. We have examined three kinds of swells (outer diameter, thickness, and area swells) obtained from simulation results of annular extrudate swell, using the Giesekus model, and have developed a method of predicting parison outer diameter and thickness swell values. The predicted values of parison outer diameters are discussed in comparison with experimental data, and reasonable results are obtained by the proposed method. This prediction method could also be applied to the parison formation process using a parison controller. As a result, it is possible to predict approximately the whole process of parison formation by numerical simulation.  相似文献   

12.
An experimental study was made of the effects of die geometry and extrusion velocity on parison swell for three high-density-polyethylene blowmolding resins. Four annular dies were used: a straight, a diverging, and two converging dies. Diameter and thickness swells were measured as functions of time under isothermal conditions and in the absence of drawdown. This was accomplished by extruding into an oil having the same density and temperature as the extrudate. It was observed that 60 to 80 percent of the swell occurs in the first few seconds and that equilibrium swell is attained only after 5 to 8 minutes have elapsed. The diameter and thickness swells appear to be independent phenomena, as the relationship between them depends strongly on die design. The ranking of the resins in terms of the magnitude of the swell was found to be the same for all die geometries and extrusion rates used.  相似文献   

13.
熔体挤出速度对共挤吹塑型坯离模膨胀影响的数值模拟   总被引:1,自引:0,他引:1  
基于三维非等温黏弹性熔体多相分层流动有限元数值模拟技术,模拟研究了熔体挤出速度对多层共挤吹塑成型环坯离模膨胀和初始温度场的影响规律,揭示了型坯离模膨胀的产生机理。结果表明,多层共挤吹塑成型环坯离模膨胀是由熔体的二次流动诱发而产生,与熔体流出机头进入自由膨胀段的二次流动强度成正比,而其二次流动强度随着熔体挤出速度的增大而增强,因而导致环坯离模膨胀随着熔体挤出速度的增加而增大;多层共挤吹塑成型熔体的二次流动强度与其第二法向应力差成正比关联关系,这与Debbaut的试验研究结论完全吻合,表明二次流动是由第二法向应力差驱动而产生。  相似文献   

14.
In this work, two new strategies were proposed for predicting the parison thickness and diameter distributions in extrusion blow molding. The first one was a finite-element-based numerical simulation for the parison extruded from a varying die gap. The comparison of simulated and experimental parison thickness distributions indicates that the new method has certain accuracy in predicting the parison thickness from a varying die gap. The second one was an artificial neural network (ANN) approach, the characteristics of which are in sufficient patterns that can be obtained without doing too many experiments. The diameter and thickness swells of the parisons extruded under different flow rates were obtained by a well-designed experiment. The obtained data were then used to train and test the ANN model. The dimension of one location on the parison can provide one pattern to train the ANN model. Trained and tested ANN model can be used to predict the dimensions at any location on the parison within a given range. The proposed two strategies can help search the processing conditions to obtain optimal parison thickness distributions.  相似文献   

15.
聚丙烯/聚乙烯共混物环状型坯挤出膨胀和垂伸的研究   总被引:1,自引:1,他引:1  
利用双螺杆挤出机将聚丙烯分别与不同熔体流动速率的聚乙烯进行共混,通过环状型坯挤出,研究了共混物的型坯膨胀和垂伸情况。结果表明,聚丙烯与较高熔体流动速率的聚乙烯共混后,其型坯直径膨胀的变化范围较宽,垂伸较明显。  相似文献   

16.
This paper focuses on the overall numerical simulation of the parison formation and inflation process of extrusion blow molding. The competing effects due to swell and drawdown in the parison formation process were analyzed by a Lagrangian Eulerian (LE) finite element method (FEM) using an automatic remeshing technique. The parison extruded through an annular die was modeled as an axisymmetric unsteady nonisothermal flow with free surfaces and its viscoelastic properties were described by a K‐BKZ integral constitutive equation. An unsteady die‐swell simulation was performed to predict the time course of the extrudate parison shape under the influence of gravity and the parison controller. In addition, an unsteady large deformation analysis of the parison inflation process was also carried out using a three‐dimensional membrane FEM for viscoelastic material. The inflation sequence for the parison molded into a complex‐shaped mold cavity was analyzed. The numerical results were verified using experimental data from each of the sub‐processes. The greatest advantage of the overall simulation is that the variation in the parison dimension caused by the swell and drawdown effect can be incorporated into the inflation analysis, and consequently, the accuracy of the numerical prediction can be enhanced. The overall simulation technique provides a rational means to assist the mold design and the determination of the optimal process conditions.  相似文献   

17.
The numerical modeling of the extrusion blow molding of a fuel tank is considered in this work. The integrated process phases are consecutively simulated, namely, parison formation, clamping, and inflation, as well as part solidification, part deformation (warpage), and the buildup of residual stresses. The parison formation is modeled with an integral type viscoelastic constitutive equation for the sag behavior and a semi-empirical equation for the swell behavior. A nonisothermal viscoelastic formulation is employed for the clamping and inflation simulation, since parison cooling during extrusion strongly affects the inflation behavior. Once the parison is inflated, it solidifies while in the mold and after part ejection. Warpage and residual stress development of the part are modeled with a linear viscoelastic solid model. Numerical predictions are compared with experimental results obtained on an industrial scale blow molding machine. Good agreement is observed. A process optimization based on a desired objective function, such as uniform part thickness distribution and/or minimal part weight, is performed. The integrated clamping, inflation, and cooling stages of the process are considered. The optimization is done by the systematic manipulation of the parison thickness distribution. Iterations are performed employing a gradient based updating scheme for the parison thickness programming, until the desired objective of uniform part thickness is obtained.  相似文献   

18.
An experimental study was carried out to study and characterize the capillary extrudate swell and parison swell behavior in extrusion blow molding of two commercial blow molding grade high density polyethylene resins. The capillary extrudate swell behavior of these resins were determined employing a capillary rheometer and a special thermostatting chamber. Parison swell behavior was determined using an Impco A13-R12 reciprocating screw blow molding machine in conjunction with cinematography and pinch-off. The experimental conditions under which capillary extrudate and parison swell data can be related are elucidated. Excellent agreement is found between the area swell values determined on the basis of capillary and parison swell experiments.  相似文献   

19.
A 58% (by weight) long glass fiber reinforced (LGF)‐HDPE master batch was blended with a typical blow molding HDPE grade. HDPE composites having between 5% and 20% (by weight) long fiber content were extruded at different processing conditions (extrusion speed, die gap, hang time). The parison swell (diameter and thickness) decreased with increasing fiber content. Although the HDPE exhibited significant shear rate dependence, the LGF/HDPE composites were shear rate insensitive. Both the diameter and weight swell results also indicated very different sagging behavior. The LGF/HDPE parisons did sag as a solid‐body (equal speed at different axial locations) governed by the orientation caused by the flow in the die. Samples taken from blown bottles showed that fiber lengths decreased to 1‐3 mm, from the original 11 mm fiber length fed to the extruder. No significant difference in fiber length distribution was found when samples for different regions of the bottle were analyzed. SEM micrographs corroborate the absence of fiber segregation and clustering or the occurrence of fiber bundles (homogeneous spatial fiber distribution) as well as a preferential fiber orientation with the direction of flow. The blowing step did not change the orientation of the fibers. Five‐percent (5%) and 10% LGF/HDPE composites could be blown with very slight variations to the neat HDPE inflation conditions. However, 20% LGF/HDPE composites could not be consistently inflated. Problems related to blowouts and incomplete weldlines were the major source of problems.  相似文献   

20.
挤出吹塑塑料油箱壁厚均匀性的研究与应用   总被引:2,自引:0,他引:2  
针对挤出吹塑高密度聚乙烯塑料油箱壁厚均匀性问题展开了研究,发现由于塑料油箱形状较复杂,均匀的型坯在吹塑过程中,各部位的变形不均匀,导致制件壁厚不均匀。根据制件各部位变形情况,设计异形型坯和口模,改善了挤出吹塑形状复杂的塑料油箱制件的壁厚均匀性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号