共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
目的 针对目前足迹检索中存在的采集设备种类多样化、有效的足迹特征难以提取等问题,本文以赤足足迹图像为研究对象,提出一种基于非局部(non-local)注意力双分支网络的跨模态赤足足迹检索算法。方法 该网络由特征提取、特征嵌入以及双约束损失模块构成,其中特征提取模块采用双分支结构,各分支均以Res Net50作为基础网络分别提取光学和压力赤足图像的有效特征;同时在特征嵌入模块中通过参数共享学习一个多模态的共享空间,并引入非局部注意力机制快速捕获长范围依赖,获得更大感受野,专注足迹图像整体压力分布,在增强每个模态有用特征的同时突出了跨模态之间的共性特征;为了增大赤足足迹图像类间特征差异和减小类内特征差异,利用交叉熵损失LCE(cross-entropy loss)和三元组损失LTRI(triplet loss)对整个网络进行约束,以更好地学习跨模态共享特征,减小模态间的差异。结果 本文将采集的138人的光学赤足图像和压力赤足图像作为实验数据集,并将本文算法与细粒度跨模态检索方法 FGC(fine-grained cross-model)和跨模态行人重识别方法 HC(hetero-cente... 相似文献
3.
在对平面墨拓赤足迹进行原始特征分析的基础上,建立基于贝叶斯决策的足迹身份识别模型.在统一的坐标系下,对足迹进行特征点标注和轮廓分段,运用形状分析理论提取了基于角度和距离、基于区域和基于轮廓的3类共41个特征参数。经过特征选择,利用贝叶斯决策进行身份识别,以266人的532枚足迹作为实验数据,正确识别率达到97.8%。实验结果表明,在同等条件下,平面墨拓赤足迹的形态特征具有身份可识别性。 相似文献
5.
6.
人体动作与行为识别在智慧交通、智能安防、智能家居、人机交互、VR/AR等领域具有广泛的应用价值。由于人体动作类型繁多,且很多动作涉及与环境对象的交互,人体动作与行为识别研究存在复杂度高、易受干扰、受场景因素影响大等问题,是计算机视觉领域的一个研究难点。回顾了人体动作与行为识别研究的发展历史,对该领域的国内外研究现在进行了梳理,重点介绍了目前主流的基于图卷积神经网络的动作与行为识别研究方法。最后分析了不同方法的优缺点,并对该领域的未来发展方向进行了探讨。 相似文献
8.
通过面部表情、语音语调以及脑电等生理信号对人的情绪状态进行识别分类,即情绪识别,其在医疗、交通以及教育等领域有广泛应用。脑电信号由于其真实可靠,在情绪识别领域日益得到广泛关注。总结了近年来脑电情绪识别研究所取得的进展,主要介绍基于深度学习和迁移学习进行的脑电情绪识别研究。介绍了脑电情绪识别基础理论、常用公开数据集、信号的采集和预处理,介绍特征提取与选择,重点介绍了深度学习和迁移学习在脑电情绪识别上的应用。指出该领域目前面临的挑战和前景。 相似文献
9.
行为识别是计算机视觉领域意义重大的热点研究问题,它经历了从手工设计特征表征到深度学习特征表达的发展过程.从传统行为识别模型和深度学习模型两方面,对行为识别发展历程中产生的主流算法进行了归类梳理.传统行为识别模型主要包括基于轮廓剪影、时空兴趣点、人体关节点、运动轨迹的特征描述方法.其中改进的密集轨迹方式拥有良好的鲁棒性和... 相似文献
10.
对文字检测和识别技术进行了全面的介绍。介绍了自然场景文字识别技术的研究背景、应用领域、技术难点等;介绍了场景文字识别的预处理技术及流程,介绍了近年来出现的基于深度学习的通用检测网络、维吾尔文和中英文的深度学习文字检测网络、场景文字识别深度学习网络、端到端场景文字检测与识别深度学习网络,并总结了各类网络的结构特点、优势、局限性、应用场景以及实现成本,接着进行了综合分析;最后介绍了公开数据集,并探讨了场景文字识别技术的发展趋势及可能的研究方向。 相似文献
11.
场景识别是一种用计算机实现人的视觉功能的技术,它的研究目标是使计算机能够对图像或视频进行处理,自动识别和理解图像和视频中的场景信息。由于场景识别技术拥有广泛的应用前景,因此得到了许多关注。随着大数据时代的来临和深度学习的发展,使用深度学习方法解决场景识别问题已经成为场景识别领域未来的发展方向。文章首先概述介绍了场景识别技术的主要研究内容和发展情况,之后阐述了在图像场景识别中深度学习方法的应用情况,然后介绍了一些在图像场景识别中深度学习方法应用的具体的典型案例,同时给出了这几种方法具体的对比与分析。最后给出了文章的结论,总结了当前图像场景识别中使用深度学习方法的发展情况,并且对未来的发展方向给出了一些展望和建议。 相似文献
12.
智能语音技术包含语音识别、自然语言处理、语音合成三个方面的内容,其中语音识别是实现人机交互的关键技术,识别系统通常需要建立声学模型和语言模型。神经网络的兴起使声学模型数量急剧增加,基于神经网络的声学模型与传统识别模型相结合的方式,极大地推动了语音识别的发展。语音识别作为人机交互的前端,具有许多研究方向,文中着重对语音识别任务中的文本识别、说话人识别、情绪识别三个方向的声学模型研究现状进行归纳总结,尽可能对语音识别技术的演化进行细致介绍,为以后的相关研究提供有价值的参考。同时对目前语音识别的主流方法进行概括比较,介绍了端到端的语音识别模型的优势,并对发展趋势进行分析展望,最后提出当前语音识别任务中面临的挑战。 相似文献
13.
14.
命名实体识别技术是信息抽取、机器翻译、问答系统等多种自然语言处理技术中一项重要的基本任务.近年来,基于深度学习的命名实体识别技术成为一大研究热点.为了方便研究者们了解基于深度学习的命名实体识别研究进展及未来发展趋势,对当前基于卷积神经网络、循环神经网络、transformer模型以及其他一些命名实体识别方法展开综述性介... 相似文献
15.
目前人脸表情识别研究多数采用卷积神经网络(CNN)提取人脸特征并分类, CNN的缺点是网络结构复杂, 消耗计算资源. 针对以上缺点, 本文采用基于多层感知机(MLP)的Mixer Layer网络结构用于人脸表情识别. 采用数据增强和迁移学习方法解决数据集样本不足的问题, 搭建了不同层数的Mixer Layer网络. 经过实验比较, 4层Mixer Layer网络在CK+和JAFFE 数据集上的识别准确率分别达到了98.71%和95.93%, 8层Mixer Layer网络在Fer2013数据集上的识别准确率达到了63.06%. 实验结果表明, 无卷积结构的Mixer Layer网络在人脸表情识别任务上表现出良好的学习能力和泛化能力. 相似文献
16.
随着自然语言处理领域相关技术的快速发展,作为自然语言处理的上游任务,提高命名实体识别的准确率对于后续的文本处理任务而言具有重要的意义。然而,中文和英文语系之间存在差异,导致英文的命名实体识别研究成果难以有效地迁移到中文研究中。因此从以下四方面分析了当前中文命名实体识别研究中的关键问题:首先以命名实体识别的发展历程作为主要线索,从各阶段存在的优缺点、常用方法和研究成果等角度进行了综合论述;其次从序列标注、评价指标、中文分词方法及数据集的角度出发,对中文文本预处理方法进行了总结;接着针对中文字词特征融合方法,从字融合和词融合的角度对当前的研究进行了总结,并对当前中文命名实体识别模型的优化方向进行了论述;最后分析了当前中文命名实体识别在各领域的实际应用。对当前中文命名实体识别的研究进行论述,旨在帮助科研工作者更为全面地了解该任务的研究方向和研究意义,从而为新方法和新改进的提出提供一定的参考。 相似文献
17.
命名实体识别(NER)是自然语言处理的核心应用任务之一.传统和深度命名实体识别方法严重依赖于大量具有相同分布的标注训练数据,模型可移植性差.然而在实际应用中数据往往都是小数据、个性化数据,收集足够的训练数据是非常困难的.在命名实体识别中引入迁移学习,利用源域数据和模型完成目标域任务模型构建,提高目标领域的标注数据量和降... 相似文献
18.
19.
对话情绪识别是情感计算领域的一个热门研究课题,旨在检测对话过程中每个话语的情感类别。其在对话理解和对话生成方面具有重要的研究意义,同时在社交媒体分析、推荐系统、医疗和人机交互等诸多领域具有广泛的实际应用价值。随着深度学习技术的不断创新和发展,对话情绪识别受到学术界和工业界越来越多的关注,现阶段需要综述性的文章对已有研究成果进行总结,以便更好地开展后续工作。从问题定义、问题切入方式、研究方法、主流数据集等多个角度对该领域的研究成果进行全面梳理,回顾和分析了对话情绪识别任务的发展。对话文本中含有丰富的语义信息,结合视频和音频可以进一步提升建模效果,因此,重点对文本对话情绪识别以及多模态对话情绪识别的方法进行了梳理,立足于当前研究现状,总结了现有对话情绪识别领域存在的开放问题以及未来的发展趋势。 相似文献
20.
电子病历(EMR)是医疗信息快速发展的产物,目前以非结构化文本形式存储。通过使用自然语言处理(NLP)技术,在非结构化文本中提取出大量医学实体,将有助于提升医务人员查阅病历效率,同时识别的成果也将辅助于接下来的关系提取和知识图谱构建等研究。介绍常用的若干个数据集、语料标注标准和评价指标。从早期传统方法、深度学习方法、预训练模型、小样本问题处理四个方面详细阐述电子病历命名实体识别方法,对比分析各模型自身的优势及局限性。探讨了目前研究的不足,并对未来发展方向提出展望。 相似文献