首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We discuss the excitation and deexcitation processes for solid state optical emitters. At present, there is considerable interest in depositing a material system, which is compatible to silicon microelectronics processing and which emits electroluminescence (EL). We will compare the EL results of rare earth doped transistors in silicon with doped insulators and doped wide bandgap semiconductors, especially Er in Si (a source for 1.5 μm) as well as Er and Tb in SiO2, Si3N4 and AIN, which are sources for infrared and visible light. The most impressive results are achieved by RE doped GaN film devices, which cover the entire visible spectrum.  相似文献   

3.
To study the heating mechanism of electron cyclotron resonance thruster(ECRT) immersed in a non-uniform magnetic field, experiments and simulations are performed based on an electron cyclotron resonance plasma source at ASIPP. It is found that the first harmonic of electron cyclotron resonance is essential for plasma ignition at high magnetic field(0.0875 T), while the plasma can sustain without the first and second harmonics of electron cyclotron resonance at low magnetic field(till 0.0170 T). Evidence of radial hollow density profile indicates that upper hybrid resonance, which has strong edge heating effect, is the heating mechanism of low-field ECRT. The heating mode transition from electron cyclotron resonance to upper hybrid resonance is also revealed. Interestingly, the evolutions of electron temperature and electron density with input power experience a ‘delayed' jump, which may be correlated with the different power levels required for cyclotron and ionization. Moreover, when the field strength decreased, the variation of electron density behaves in an opposite trend with that of electron temperature,implying a possible competition of power deposition between them. The present work is of great interest for understanding the plasma discharge in ECRT especially immersed in a non-uniform magnetic field, and designing efficient ECRT using low magnetic field for economic space applications.  相似文献   

4.
Previous studies have shown that leak electrons in cusped field thrusters can move along the channel axis to the anode after crossing the magnetic cusp on the exit. In this paper, a one- dimensional fluid model is built along two typical electron paths to study the influence of leak electrons on the discharge characteristics of a cusped field thruster, considering the electron temperature equation. It is found that the frequencies of low-frequency oscillations increase with a decrease in the proportion of leak electrons, which is related to an increase in the ion speed in the channel. Simulation results show that the position of the peak electron temperature is near the magnetic cusp on the exit and the position of the peak electron density is located downstream from the middle magnetic tip. With a decrease in the proportion of the leak electrons, the peak electron temperature and peak electron density decrease and the position of the peak electron density moves away from the exit, which is related to a decrease in the potential fall on the exit and an increase in confinement of electrons to the middle magnetic cusp.  相似文献   

5.
6.
To date,the selection of the magnetic field line used to match the chamfered inner and outer channel walls in a magnetically shielded Hall thruster has not been quantitatively studied.Hence,an experimental study was conducted on a 1.35 kW magnetically shielded Hall thruster with a xenon propellant.Different magnetic field lines were chosen,and corresponding tangentially matched channel walls were manufactured and utilized.The results demonstrate that high performance and a qualified anti-sputtering effect cannot be achieved simultaneously.When the magnetic field lines that match the chamfered wall have a strength at the channel centerline of less than 12% of the maximum field strength,the channel wall can be adequately protected from ion sputtering.When the magnetic field lines have a strength ratio of 12%-20%,the thruster performance is high.These findings provide the first significant quantitative design reference for the match between the magnetic field line and chamfered channel wall in magnetically shielded Hall thrusters.  相似文献   

7.
The paper centres on the use of the so-defined LEIS approach (Large-Eddy & Interface Simulation) for turbulent multifluid flows present in thermal-hydraulics applications. Interfacial flows involving deformable, sheared fronts separating immiscible fluids are shown to be within reach of this new approach, featuring direct resolution of turbulence and sheared interface deformations within the interface tracking (ITM) framework, such as level sets and VOF. In this technique supergrid turbulence and interfacial scales are directly solved whereas the sub-grid (SGS) parts are modelled, at least the turbulence part of it. First results are shown (feasibility), and difficulties and open issues are discussed. The connection between these two particular scales will also be discussed, and potential modelling routes evoked, including combining two-fluid and ITM, local grid refinement, or combing particle tracking and ITM for sub-grid inclusions smaller than the grid size.  相似文献   

8.
A 200 W cylindrical Hall thruster with a cusp-type magnetic field was proposed, manifesting convergent plume and high specific impulse. In this paper, a series of ring-shaped anodes are designed and the influence of anode axial position on the performance of CHT with a cusp-type magnetic field is studied. The experimental results indicate that the thruster keeps stable operation at the condition of 140–270 W discharge power. When the anode moves axially towards the upstream cusp field, the thrust enhances from 6.5 mN to 7.6 mN and specific impulse enhances from 1658 s to 1939 s significantly. These improvements of thruster performance should be attributed to the enhancement of current utilization, propellant utilization and acceleration efficiency. According to the analyses on the discharge characteristics, it is revealed that as the anode moves upstream, the electron transport path could be extended, the magnetic field in this extended path could impede electron cross-field transport and facilitate the ionization intensity, yielding to the enhancement of current utilization and propellant utilization efficiency. Moreover, along with this enhancement of upstream ionization at the given anode flow rate, the main ionization region is thought to move upstream and then separate more apparently from the acceleration region, which has been demonstrated by the narrowing of ion energy distribution function shape. This change in acceleration region could decrease the ion energy loss and enhance acceleration efficiency. This work is beneficial for optimizing the electrode structure of thruster and recognize the ionization and acceleration process under the cusp magnetic field.  相似文献   

9.
The EMIS PARSIFAL was designed to purify very small quantities of radioactive isotopes. Yields are therefore an important component of the separations. The ionization is done in a thermoionization source or a plasma source, according to the physical properties of the concerned elements. For rare earth elements (REE), hydroxides are electrodeposited on a tantalum wire; for thermoionization, the wire is introduced in a tungsten crucible whose depth is linked to the boiling point of the element. Samples weigh between 0.2 and 0.9 mg. The crucible, heated at 3050°C by electron bombardment, gives REE yields from 20 to 40% and usually 50% for europium. The total beam intensity is about 5 × 10−6 A and separations last from 2 to 20 hours until the whole sample is consumed.  相似文献   

10.
利用同步辐射X射线吸收近边结构(XANES)对Eu,Dy共掺杂硅酸盐体系长余辉发光材料中的稀土离子的价态进行分析,结果表明有 2价和 3价的Eu离子存在,但未发现 1价的Eu离子,而Dy离子则始终以 3价形式存在,未发现 4价Dy离子存在。这说明空穴传输模型还存在许多值得商榷的问题。该研究为进一步研究长余辉材料的发光机理提供了实验依据。  相似文献   

11.
This paper presents a method to measure the in situ magnetic field in a Hall thruster by optical non-invasive means, based on the optical Faraday rotation effect. This method does not affect the discharge of the thruster. Furthermore, its time resolution depends on the speed of the photodetector, and measurement at a MHz scale can be achieved.  相似文献   

12.
13.
14.
It is assumed that the shift of a strong magnetic field region with a positive gradient from exit plane to outside, namely the transit from a normal loaded magnetic field to an aft-loaded one, enhances the multiple ionization process in the magnetically shielded Hall thruster. To confirm this conjecture, a comparative study is carried out numerically with a particle-in-cell method. The simulation results prove that compared with the normal loaded magnetic field, the application of aft-loaded magnetic field enhances the multiple ionization process. This study further analyzes the ionization characteristics of the transition from low-charged ions to high-charged ions under two magnetic field conditions and the influence of the magnetic strength of aft-loaded magnetic field on the multiple ionization characteristics. The study described herein is useful for understanding the discharge characteristics of Hall thruster with an aft-loaded magnetic field.  相似文献   

15.
Radioactive rare earth chlorides in waste LiCl-KCl molten salts have to be separated as a stable form to minimize waste volume and to achieve stable solidification. In this work, thermal behavior of rare earth chlorides (CeCl3, GdCl3, NdCl3, PrCl3) was investigated in an oxygen condition to recover rare earth oxides from a LiCl-KCl-RECl3 system. The rare earth chlorides in the LiCl-KCl molten salts were smoothly converted to an oxychloride form at a higher temperature than 650 °C, except for CeCl3. CeCl3 was totally converted to an oxide from at a higher temperature than 450 °C. The rare earth oxychlorides (GdOCl, NdOCl, PrOCl) were effectively converted to oxide forms at a higher temperature than 1100 °C. It was confirmed that rare earth oxides can be recovered from a LiCl-KCl-RECl3 system without impurity generation.  相似文献   

16.
17.
18.
19.
20.
The application and development of pulsed plasma thrusters(PPTs) in recent years are reviewed in this paper. The advantages of PPTs are discussed. The schematics, propulsion performance parameters and key physical processes of PPTs are described. Some representative PPT products and flight systems developed in recent years are presented to show the performance of the PPT.Studies about how electrode structures, discharge circuits, propellant materials, energy discharge method, propellant feed method, ignition method and number of thruster heads influence the PPT performance are presented and analyzed. The ignitor design method, ignition process and propellant carbonization are introduced to discuss the reliability and lifetime issues in PPTs. The modeling methods of the discharge circuit, as well as ablation, ionization and acceleration in PPTs are presented. Finally, the application of PPTs in the future is analyzed and some suggestions for PPT development are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号