首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用P507从硫酸镍溶液中萃取分离钙镁的研究   总被引:6,自引:0,他引:6  
研究了用P507从硫酸镍溶液中萃取分离钙、镁,给出了萃取分离的最佳工艺条件为:温度60摄氏度,水相平衡pH6.00,相比1:1,P507的体积分数10%,皂化率20%,在此条件下,以P507和磺化煤油组成的有机相萃取分离效果较好。  相似文献   

2.
从钒钛磁铁矿渣的废酸浸出液中萃取钒的研究   总被引:1,自引:0,他引:1  
钒钛磁铁矿冶炼产生的矿渣含有大量钒和其他金属,目前主要采用废气排放量高、能耗较高的碱金属-碱土金属烧结法回收。另一方面,钛白工业生产中会产生大量的高浓度废酸。针对上述问题,采用以钛白废酸作为浸出剂的无焙烧直接加压酸浸提钒新工艺,可实现钒渣中钒与其他有价元素的提取分离和钛白废酸的综合利用。针对钛白废酸加压浸出得到的浸出液中的钒及其他金属元素在P204/TBP/煤油体系中的萃取进行了研究。研究了浸出液p H值、Na2SO3还原剂用量、P204浓度、萃取相比、振荡时间、萃取温度等因素对钒萃取率的影响。结果表明,当有机相的组成(体积分数)为20%P204∶10%TBP∶70%磺化煤油、还原剂含量为31.44 g·L-1、浸出液初始p H=2.5、相比(O/A)=2/1、萃取温度30℃、震荡时间6 min时,钒的一级萃取率达到97.71%,其他主要金属元素铁、镁、锰、铝(萃取率分别为35.90%,14.91%,16.45%,16.87%)被抑制在水相中,使钒与其他金属元素得以分离。  相似文献   

3.
以煤矸石硫酸浸出液为研究对象,利用2-乙基己基磷酸单2-乙基己基酯(P507)萃取分离其中的镓与铁。考察了溶液pH值、P507浓度、振荡时间、振荡强度、萃取温度对镓和铁萃取率的影响。结果表明:在A/O相比1∶1、P507浓度20%、溶液pH值1.5、振荡时间15 min、振荡强度200 r/min和萃取温度35℃的条件下,Ga3+单级萃取率可达82%,Fe2+单级萃取率低于18%。改变A/O相比进行萃取实验,绘制了镓的萃取平衡等温线,确定了在A/O相比4∶1的条件下,镓理论萃取级数为四级,此时镓的萃取率为98.4%,而铁萃取率为17.4%,其余金属离子萃取率均低于10%,可实现镓的选择性萃取。  相似文献   

4.
用P204从鼓风炉烟尘浸出液中萃取铟的试验研究   总被引:3,自引:0,他引:3  
试验研究了从云南某铅锌厂鼓风炉烟尘浸出液中萃取铟。以P204为萃取剂,煤油为稀释剂,考察了萃原液的酸度,萃取相比、分配比、温度、时间等因素对铟萃取率的影响。试验结果表明,P204体积分数为30%,萃原液酸度2mol/L,萃取相比1:4,萃取温度40℃,萃取时间60s,铟萃取率为96%左右。  相似文献   

5.
铜镍矿硝酸浸出液中高含量铁的萃取分离   总被引:1,自引:1,他引:0  
针对浸出液高铁(40g/L)、低铜镍(各4g/L)以及硝酸含量高的特殊情况,采取33%P204-煤油三级萃取分离铁,6mol/L盐酸三级反萃工艺,在基本不损失铜镍的前提下将铁除至100mg/L以下,除去的铁可回收利用。  相似文献   

6.
P204和P507常用作萃取剂用于稀土浸出液的萃取,采用单一萃取剂萃取难以有效分离、富集稀土,本文利用P507萃取高浓度稀土溶液时对轻稀土萃取能力较弱而P204萃取能力强的特点,创新性提出采用P507与TBP协同萃取中重稀土,然后采用P204与TBP协同萃取轻稀土的工艺,并进行了萃取、反萃取试验,得出以下结论。在试验原料条件下,采用二级萃取工艺,当相比A/O=10/1、pH值4.0、常温、P507体积分数35%、TBP体积分数5%时,P507+TBP对中、重稀土的萃取率较佳,均能达到90%以上;采用二级萃取工艺,在P204体积分数35%、TBP体积分数5%、相比A/O=15/1、常温、萃取时间5 min的条件下,P204+TBP对轻稀土的萃取率达到97%。P507与P204的负载有机相在适当的酸性条件下,P507负载有机相经二级逆流反萃、P204负载有机相经三级逆流反萃后均可得到高浓度的稀土富集液,浓度值达到直接进入萃取分离线的要求。该研究在低能耗、低试刘消耗条件下实现了稀土提取利用及初步分离,所生产的氯化稀土溶液可以直接进入稀土分离厂进行分离提纯,为高浓度稀土回收分离提供了参考。  相似文献   

7.
本文采用Lix984作萃取剂,从含铜铁的生物浸出液中选择性萃取铜。通过考察溶液pH、相比O/A、初始铜浓度、萃取温度、搅拌速度及搅拌时间、萃取级数等因素对萃取率、分配比、分离系数的影响,结果表明:pH大于2.22,相比O/A=1:1,搅拌速度为200rpm,搅拌时间为4min,萃取级数为3级,铜的萃取率能达到99.8%以上,铜分配比能达到600以上,铁分配比小于1,铜铁分离系数能达到1900以上,同时发现低初始铜浓度及高萃取温度对萃取有利,可见生物浸出液中铜铁能达到很好的分离效果。  相似文献   

8.
针对赤泥的硫酸高压浸出液的性质,进行了P204萃取试验研究。通过考察萃取剂体积分数、萃取温度、水相中硫酸浓度等因素对钪、铁萃取分离的影响,得出了最佳萃取条件为萃取温度35℃,水相硫酸浓度4 mol/L,萃取剂体积分数5%,O/A=1∶3,萃取时间15 min,转速230 r/min,10级萃取;在最佳条件下,钪、铁分离效果较好,钪萃取率为92.10%、铁萃取率为1.13%。负载有机相经10级4 mol/L盐酸洗涤,杂质Fe的去除率为97.88%,钪损失率为0.24%;这表明P204能够很好地将萃取原液中的钪与杂质金属铁分离。  相似文献   

9.
P507萃取分离钴镍试验研究   总被引:3,自引:0,他引:3  
此文推导了动力机器基础单自由度和双自由度计算模型在白噪声激励下的动力响应,并运用于钢球磨煤机基础的动力响应计算中,得钢球磨煤机基础振幅的计算公式。  相似文献   

10.
采用P204作为萃取剂,磺化煤油为稀释剂,从锰钴镍溶液中二级萃取分离锰,有机相反萃取富集锰,考察各因素对锰萃取率及分离系数的影响并确定最优条件。结果表明,在室温下,一级萃取相比O/A=2.5,P204含量30%,pH=3.5,皂化率30%,锰萃取率为62.39%;二级萃取在P204含量30%,皂化率30%,O/A=2,锰的总萃取率达98.06%,锰与钴、镍分离系数分别为90.11、92.33。萃取液经硫酸反萃洗钴镍,按相比O/A=10,酸度70 g/L,可洗去85%以上的钴和镍。洗钴镍后液经硫酸反萃锰,按相比O/A=4,酸度110 g/L,可反萃98.27%的锰,反萃液钴、镍的浓度小于0.5 g/L。  相似文献   

11.
利用软锰矿在酸性(硫酸体系)条件下氧化浸出闪锌矿,对其浸出液进行萃取铟分离铁。以P507-煤油为萃取体系,考察酸度、萃取剂的浓度、温度、相比(体积比)、时间等对铟铁萃取率的影响。在室温条件下,酸度1.5 mol/L、P507体积分数30%、萃取相比1∶1、萃取时间10 min、铟的一级萃取率可达到99%以上,而铁的一级萃取率为20%。对负载有机相进行草酸(30 g/L)洗涤,铁洗涤率为99.99%,而铟的洗涤率仅为0.000 1%。达到了萃取富集铟分离杂质的目的。  相似文献   

12.
从石煤浸出液中萃取钒   总被引:1,自引:1,他引:1  
采用P204-煤油萃取体系从含钒浸出液中萃取钒,确定了有机相中钒饱和容量和萃取剂体积含量之间的关系,根据单一条件的萃取效果,进行了多级逆流萃取及反萃试验,结果表明:若要使钒的萃取率大于95%,需进行6~7级的逆流萃取,若要使钒的反萃率大于98%,需进行10~11级的逆流反萃。  相似文献   

13.
《国外锡工业》1998,26(3):33-36
用TBP作萃取剂研究了从含Ag,Cu,Sb,As,Sn,Fe,Pb的氯化浸出液中萃取Sn。分离Sn的最佳萃取条件为:25%TBP-10%1- 醇-65%煤油(体积%)。用HCl作反萃取剂,采用四步反萃,达到〉80%的Sn回收率。  相似文献   

14.
P507萃取废弃线路板微生物浸出液中镍的研究   总被引:1,自引:1,他引:1       下载免费PDF全文
废弃线路板(PCB)浸出液经萃取提铜除铁后利用P507富集分离浸出液中的Ni 2+,考察萃取剂浓度、皂化率、相比(O/A)、萃取时间、浸出液pH对Ni 2+萃取率的影响。结果表明,在皂化率为30%、相比1∶1、P507浓度20%、萃取搅拌时间3min、浸出液pH 2.07的条件下,PCB微生物浸出液中Ni 2+的萃取率可达99.4%以上。  相似文献   

15.
研究了金铜精矿压氧浸出后高铜低铁料液中铜铁的萃取分离。利用P507萃取浸出液中的铁,0.01 mol/L硫酸洗涤有机相,6.0 mol/L盐酸反萃,萃铁后液以Na2CO3沉铜,硫酸溶解该沉淀后,可送铜的精练。铜铁分离系数为1 030,铜回收率可达96.26%。  相似文献   

16.
钒作为一种稀有金属常与其他金属伴生,含钒矿石的硫酸浸出液中含有大量铁等杂质离子,严重影响钒的后续分离富集。萃取动力学研究是判断萃取过程控制步骤和金属离子萃取分离难易程度的重要方法。本文采用自行设计的圆筒型恒界面池对P507萃取硫酸溶液中V(Ⅳ)和Fe(Ⅱ)的动力学进行了研究。结果表明:水相是萃取过程的扩散阻力区,该萃取过程为化学反应控制类型,随着搅拌速度和萃取温度的升高,V(Ⅳ)和Fe(Ⅱ)的萃取速率均呈上升趋势。萃取V(Ⅳ)的表观活化能为48.68 kJ/mol,萃取Fe(Ⅱ)的表观活化能为135.11 kJ/mol, P507更容易萃取硫酸溶液中V(Ⅳ),有望实现V(Ⅳ)与Fe(Ⅱ)的高效分离。  相似文献   

17.
研究了从磷酸盐矿石酸解液中萃取钪,考察了萃取剂种类、有机相与水相体积比、萃取时间、水相酸度等因素对钪萃取率的影响。结果表明:在萃取剂组成为18%P204+2%P507+80%煤油、Vo∶Va=1∶10、水相H+质量浓度为0.5g/L、室温条件下萃取8min,钪萃取率达93.3%。  相似文献   

18.
从钴白合金的酸性浸出液中选择性萃取铁   总被引:1,自引:0,他引:1  
研究了用TBP作萃取剂,从含铁、铜、钴的酸性浸出液中萃取铁。试验结果表明,当有机相中TBP体积分数为70%,接触时间3 min,VO/VA=2/1,料液中[H ]为1.5 mol/L,[Cl-]为190 g/L时,铁的萃取效果最佳,其萃取率大于99.6%,铁与铜、钴的分离系数分别在3×103与4.5×103以上,而且有机相中无萃取污物产生。反萃取试验结果表明,用纯净水反萃取铁,在VO/VA=5/1条件下,经过5级反萃取,铁的反萃取率可达到98.8%。  相似文献   

19.
从锂云母浸出液中分离铷铯试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用溶剂萃取法对某锂云母浸出液中的铷、铯进行分离试验。考察萃取剂浓度、料液碱度和萃取相比对铷、铯萃取分离效果的影响。萃取分离铯、铷的较优条件为:萃取剂t-BAMBP浓度0.7mol/L、环己烷+磺化煤油为稀释剂、相比O/A=1、料液碱度0.3mol/L、萃取时间10min,铷萃取率为90.0%,铯萃取率为32.0%。负载有机相洗涤条件为:洗涤液氯化钠浓度0.1mol/L、相比O/A=1、洗涤时间10min,铷洗脱率为80.0%,铯洗损率为9.36%,分离效果较好。  相似文献   

20.
P204萃取脱除锌浸出液中氟氯   总被引:1,自引:0,他引:1       下载免费PDF全文
采用P204萃取含氟、氯的锌浸出液,锌萃取率大于95%,反萃率高于99%,回收率高于98%,氟、氯脱除率均高于99%。P204萃取锌浸出液的工艺条件为:皂化率65%、锌料液pH=4.0、萃取温度40℃、相比O/A=2、萃取时间5min。锌电解废液反萃锌的工艺条件为:H2SO4 120g/L、反萃温度40℃、相比O/A=0.5、反萃时间5min。萃取、反萃温度控制在40~45℃,可避免出现有机相乳化和分相时间长等问题。串级试验萃余液含锌2.42g/L、氟0.52g/L、氯1.42g/L,经沉氟、沉氯处理后,氟、氯浓度分别降低到0.042g/L、0.079g/L,可返回锌冶炼系统配入浸出、净化使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号