首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric pressure glow discharge (APGD) plasma in air has high application value.In this paper,the methods of generating APGD plasma in air are discussed,and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied.It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress.Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field,the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated.Further,through combining electrode structures,a large area of APGD plasma in air is generated.On the other hand,by using the method of increasing the density of initial electrons,millimeter-gap glow discharge in atmospheric pressure air is formed,and a maximum gap distance between electrodes is 8 ram.By using the APGD plasma surface treatment device composed of contact electrodes,the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained.The present paper provides references for the researchers of industrial applications of plasma.  相似文献   

2.
In order to achieve atmospheric pressure diffuse dielectric barrier discharge (DBD) in air, a helical–helical electrode structure with a floating-voltage electrode is proposed in this paper. Results from an electric field distribution simulation indicate that strong electric fields are formed where the helical-contact electrodes’ insulating layers are in contact with each other, as well as near the floating-voltage electrode, which contributes to the production of a large number of seed electrons. The electric field within the air gap is weak (< 3×106 Vm−1), which inhibits the rapid development of electron avalanches and the formation of filament discharge. The experimental result shows that a 3.0 mm width diffuse DBD is generated in air. Moreover, based on the study of the helical–helical electrode with a floating-voltage electrode, a threedimensional electrode structure is presented, and a three-dimensional diffuse discharge is generated in air by adopting this electrode structure. The plasma studied is stable and demonstrates good diffusion characteristics, and therefore has potential applications in the field of exhaust gas treatment and air purification.  相似文献   

3.
In this work, a floating electrode is employed to generate a stable large-area diffuse discharge plasma under an open oxygen-rich environment. The discharge image and the optical emission spectra of the N2(C-B),N2+(B-X), N2(B-A), and O(3p–3s, 777 nm) are measured to analyze the morphological and optical characteristics of the discharge. The effects of applied voltage, gas flow rate, and electrode gap on the reactive species, vibrational temperature and...  相似文献   

4.
The structure and propagation of the plasma in air breakdown driven by high-power microwave have attracted great interest. This paper focuses on the microwave amplitude and frequency dependence of plasma formation at atmospheric pressure using one two-dimensional model,which is based on Maxwell's equations coupled with plasma fluid equations. In this model, we adopt the effective electron diffusion coefficient, which can describe well the change from free diffusion in a plasma front to ambipolar diffusion in the bulk plasma. The filamentary plasma arrays observed in experiments are well reproduced in the simulations. The density and propagation speed of the plasma from the simulations are also close to the corresponding experimental data. The size of plasma filament parallel to the electric field decreases with increasing frequency, and it increases with the electric field amplitude. The distance between adjacent plasma filaments is close to one-quarter wavelength under different frequencies and amplitudes. The plasma propagation speed shows little change with the frequency, and it increases with the amplitude. The variations of plasma structure and propagation with the amplitude and frequency are due to the change in the distribution of the electric field.  相似文献   

5.
An atmospheric pressure argon plasma brush with air addition is employed to treat polyethylene terephthalate(PET) surface in order to improve its hydrophilicity. Results indicate that the plasma plume generated by the plasma brush presents periodically pulsed current despite a direct current voltage is applied. Voltage-current curve reveals that there is a transition from a Townsend discharge regime to a glow one during one discharge period. Optical emission spectrum indicates that more oxygen atoms are produced in the plume with increasing air content, which leads to the better hydrophilicity of PET surface after plasma treatment. Besides,an aging behavior is also observed. The hydrophilicity improvement is attributed to the production of oxygen functional groups, which increase in number with increasing air content.Moreover, some grain-like structures are observed on the treated PET surface, and its mean roughness increases with increasing air content. These results are of great importance for the hydrophilicity improvement of PET surface with a large scale.  相似文献   

6.
Matching optimization of resonant parameters among the high power inverters, low power transformers and plasma reactors have significant effects on the performance and output of the reactor array when applying the partitioned operation method. In this paper, the Matlab/ Simulink electrical model was established based on the method of partitioned operation. The matching relation between resonant parameters is analyzed on the basis of experimental result. As a consequence, transformer leakage inductance and working frequency are the important parameters influencing the operational efficiency of system, leakage inductance of transformer should be adjusted based on the equivalent capacitance of plasma reactor to realize the matching optimization of resonant parameters.  相似文献   

7.
Cold atmospheric plasma (CAP) jet has wide applications in various fields including advanced materials synthesis and modifications, biomedicine, environmental protection and energy saving, etc. Appropriate control on the volume, temperature and chemically reactive species concentrations of the CAP jet is of great importance in actual applications. In this paper, an radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma generator with a hybrid cross-linear-field electrode configuration is proposed. The experimental results show that, with the aid of the copper mesh located at the downstream of the traditional co-axial-type plasma generator with a cross-field electrode configuration, a linear field between the inner powered electrode of the traditional plasma generator and the copper mesh can be established. This liner- field can, to some extent, enhance the discharges at the upstream of the copper mesh, resulting in small increments (all less than 12.5%) of the species emission intensities, electron excitation temperatures and gas temperatures by keeping other parameters being unchanged. And due to the intrinsic transparent and conducting features of the grounded copper mesh to the gas flowing, electric current and heat flux of the plasma plumes, a plasma region with higher concentrations of chemically reactive species and larger plasma plume diameters is obtained at the downstream of the grounded copper mesh on the same level of the gas temperature and electron excitation temperature compared to those of the plasma free jet. In addition, the charged particle number densities at the same downstream axial location of the grounded copper mesh decrease significantly compared to those of the plasma free jet. This means that the copper mesh is also, to some extent, helpful for separating the chemically reactive neutral species from the charged particles inside a plasma environment. The preceding results indicate that the cross-linear-field electrode configuration of the plasma generator is an effective approach for tuning the characteristics of the RF-APGD plasma jet in order to obtain an appropriate combination of the plasma jet properties with higher chemically reactive species concentrations, especially relative higher number densities of neutral species, larger plasma volumes and lower gas temperatures.  相似文献   

8.
《Annals of Nuclear Energy》2007,34(1-2):93-102
An experimental study on natural convection heat transfer on a horizontal downward facing heated surface in a water gap has been carried out under atmospheric pressure conditions. A total of 7204 experimental data points are correlated using Rayleigh versus Nusselt number correlations in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures are discussed. The buoyancy force acts as a resistance force for natural convection heat transfer on a downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of Rayleigh number, or Rayleigh and Prandtl numbers both, may be used. However, the best accuracy is provided by an empirical correlation which expresses the Nusselt number as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.  相似文献   

9.
Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cm~(-3) e under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H_2O and O_2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.  相似文献   

10.
In this paper, volume barrier discharge with different gap distances is added on the discharge border of high-voltage electrode of annular surface barrier discharge for generating volume added surface barrier discharge (V-SBD) excited by bipolar nanosecond high-voltage pulse power in atmospheric air. The excited V-SBDs consist of surface barrier discharge (d=0 mm) and volume added surface barrier discharges (d=2 mm and 3 mm). The optical emission spectra are recorded for calculating emission intensities of N2 (C 3u →B3Πg ) and N2+ (B 2Σu+ → X 2Σg+ ), and simulating rotational and vibrational temperatures. The influences of gap distance of V-SBD on emission intensity and plasma temperature are also investigated and analyzed. The results show that d=0 mm structure can excite the largest emission intensity of N 2 (C 3 Πu →B 3Πg ), while the existence of volume barrier discharge can delay the occurrence of the peak value of the emission intensity ratio of N2+ (B 2Σu+ → X 2Σg+ )/N 2(C3Πu →B3Πg ) during the rising period of the applied voltage pulse and weaken it during the end period. The increasing factor of emission intensity is effected by the pulse repetition rate. The d=3 mm structure has the highest threshold voltage while it can maintain more emission intensity of N2(C3 Π u →B 3Πg ) than that of d=2 mm structure. The structure of d=2 mm can maintain more increasing factor than that of the d=3 mm structure with varying pulse repetition rate. Besides, the rotational temperatures of three V-SBD structures are slightly affected when the gap distance and pulse repetition rate vary. The vibrational temperatures have decaying tendencies of all three structures with the increasing pulse repetition rate.  相似文献   

11.
In this paper,the influence of voltage rising time on a pulsed-dc helium-air plasma at atmospheric pressure is numerically simulated.Simulation results show that as the voltage rising time increases from 10 ns to 30 ns,there is a decrease in the discharge current,namely 0.052 A when the voltage rising time is 10 ns and 0.038 A when the voltage rising time is 30 ns.Additionally,a shorter voltage rising time results in a faster breakdown,a more rapidly rising current waveform,and a higher breakdown voltage.Furthermore,the basic paraneters of the streamer discharge also increase with voltage rise rate,which is ascribed to the fact that more energetic electrons are produced in a shorter voltage rising time.Therefore,a pulsed-dc voltage with a short rising time is desirable for efficient production of nonequilibrium atmospheric pressure plasma discharge.  相似文献   

12.
The dielectric barrier discharge(DBD) in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments. In this paper, the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified. It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap. The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode. The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature, which is beneficial for industrial applications. This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD, which can provide some references for the development and applications of the DBD in the future.  相似文献   

13.
In this letter, the streamer propagation in the atmospheric pressure helium plasma jet with afloating electrode nozzle driven by the kHz AC power supply is investigated. The current signal induced by the space charges and the mean propagation velocity of the guided ionization waves are measured by the capacitive probe method in the discharge region. The space charges in the guided ionization waves are found to increase with the applied voltage, which enhances both the electric field near the streamer head and the propagation velocity. The applicability of the streamer mechanism to the propagation of the guided ionization waves is validated by this electrical diagnostic method.  相似文献   

14.
A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length,ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.  相似文献   

15.
In the last two decades a growing interest has been shown in the investigation of atmospheric pressure plasma jets (APPJs) that operate in contact with liquid samples. In order to form a complete picture about such experimental systems, it is necessary to perform detailed diagnostics of plasma jets, as one step that will enable the adjustment of system properties for applications in different areas. In this work, we conducted a detailed electrical characterisation of a plasma system configuration used for water treatment. A helium plasma jet, with a pin electrode powered by a continuous sine wave at a frequency of 330 kHz, formed a streamer that was in contact with a distilled water sample. An electrical circuit allowed the monitoring of electrical signals supplied to the jet and also to the plasma itself. An electrical characterisation together with power consumption measurements was obtained by using two different methods. The first method was based on the direct measurements of voltage and current signals, while in the second method we used 'Lissajous figures'. We compared these two methods when used for discharge power estimation and addressed their advantages and limitations. The results showed that both of these methods could be used to successfully determine power consumed by a discharge in contact with water, but only when taking into account power dissipation without plasma.  相似文献   

16.
This study investigates the influence of two types of target,skin tissue and cell culture medium,with different permittivities on a k Hz helium atmospheric pressure plasma jet (APPJ) during its application for wound healing.The basic optical–electrical characteristics,the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored.The experimental results show that,compared with a jet freely expanding in air,the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets,and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased.There are also multiple increases in the relative intensity of OH (A~2Σ?→?X~2Π) and O (3p~5S–3s~5S) at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets.Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account,they make the various characteristics of He APPJ interacting with two different targets together.  相似文献   

17.
AbstractThis study investigates the influence of two types of target, skin tissue and cell culture medium,with different permittivities on a kHz helium atmospheric pressure plasma jet (APPJ) during itsapplication for wound healing. The basic optical–electrical characteristics, the initiation andpropagation and the emission spectra of the He APPJ under different working conditions areexplored. The experimental results show that, compared with a jet freely expanding in air, thediameter and intensity of the plasma plume outside the nozzle increase when it interacts with thepigskin and cell culture medium targets, and the mean velocity of the plasma bullet from the tubenozzle to a distance of 15 mm is also significantly increased. There are also multiple increases inthe relative intensity of OH (A2 Σ → X2 Π) and O (3p5 S–3s5 S) at a position 15 mm away fromnozzle when the He APPJ interacts with cell culture medium compared with the air and pigskintargets. Taking the surface charging of the low permittivity material capacitance and thestrengthened electric field intensity into account, they make the various characteristics of HeAPPJ interacting with two different targets together.  相似文献   

18.
Systematic spectroscopic studies and diagnostics of an atmospheric pressure radiofrequency (13.56 MHz) He plasma is presented. The discharge is an intrinsic part of the resonant circuit of the radiofrequency oscillator and was obtained using a monoelectrode type torch, at various gas flow-rates (0.1-6.0 l/min) and power levels (0-2 W). As function of He flow-rate and power the discharge has three developing stages: point-like plasma, spherical plasma and ellipsoidal plasma. The emission spectra of the plasma were recorded and investigated as function of developing stages, flow-rates and plasma power. The most important atomic and molecular components were identified and their evolution was studied as function of He flow-rate and plasma power towards understanding basic mechanisms occurring in this type of plasma. The characteristic temperatures (vibrational Tvibr, rotational Trot and excitation Texc) and the electron number density (ne) were determined.  相似文献   

19.
李磊  夏维东  赵宇晗 《核技术》2004,27(5):350-353
提出了一种磁驱动滑移电弧放电产生大气压非平衡等离子体的方法,给出了这种装置的基本结构,主要性能及基本原理。在弧电流0.6A左右得到了约100m/s的电弧移动速度和约80V/mm的电场强度,产生了非平衡度较高的大气压非平衡等离子体。  相似文献   

20.
The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond pulsed generator.The optical emission spectrum diagnosis revealed that OH(A~2∑~+?→?X~2Π,306–309 nm),N~3_2(CΠ→B~3Π_g,337 nm),O(3p~5p→3s~5s~0,777.2 nm)and O(3p~3p→3s~3s~0,844.6 nm)were produced in the discharge plasma channels.The electron temperature(T_e)was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm,and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 e V.The gas temperature(T_g)that was measured by Lifbase was in a range from 400 K to 600 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号