共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前基础深度学习模型特征提取能力较弱,静态词向量模型无法表示多义词以及网站类型识别准确率不高等问题,提出了基于ERNIE2.0-MCNN-BiSRU-AT的网站类型识别模型。采用ERNIE2.0通过结合当前词的具体上下文语境学习到动态向量表征,解决静态词向量存在的一词多义问题;多特征融合网络全面地捕捉多个尺度下的局部语义和上下文序列特征,软注意力机制计算每个特征对网络分类结果的权重得分,以突出关键分类特征。线性分类层输出网站类型识别结果。在真实网站类型数据集上进行实验,相关结果表明,ERNIE2.0-MCNN-BiSRU-AT模型F1值达到了95.67%,高于实验对比的近期表现优秀的深度学习模型,并通过大量消融对比实验验证了各个功能模块的有效性。 相似文献
2.
3.
微博客评论带有用户的情感信息,对其进行分类研究,有利于微博监控、舆情发现、舆论引导等工作的实现,具有一定的研究意义。在构建中文微博情感语料库的基础上,引入情感词词典,对微博客评论进行情感分类,并比较了使用和未使用同义词词林的结果,发现引入同义词词林能提高分类的准确性。 相似文献
4.
在线评论情感分析是商户和消费者共同关注的热点,基于词典的传统情感分类方法不适用于在线评论的分类,因此提出基于SVM算法的在线评论情感分类模型.首先通过清洗、分词、标注情感标签对在线评论进行预处理,然后进行词向量表示,最后使用SVM算法进行分类.实验结果表明,该模型具有较为理想的分类准确率. 相似文献
5.
针对特定的银行产品评论业务场景,从自然语言处理(natural language processing,NLP)的角度出发,将产品评论观点提取和评价任务分别转化为自然语言处理技术中的序列标注问题和情感分类问题,使用ERNIE(enhanced language representation with informative entities)模型进行微调来实现对银行产品评论中的银行名称、产品名、用户观点等实体的自动提取以及对评论文本的自动评价。通过在真实数据集上的验证,微调后的模型能够实现对银行产品评论观点文本中实体进行自动提取和评价且效果良好。 相似文献
6.
随着深度学习技术在自然语言处理领域的广泛应用,短文本情感分类技术得到显著发展。该文提出了一种融合TextCNN-BiGRU的多因子权重文本情感分类算法。算法通过引入词语情感类别分布、情感倾向以及情感强度三个关键因子改进了词语的向量表示。将基于词向量表示的短文本分别作为TextCNN和BiGRU模型的输入,提取文本关键局部特征以及文本上下文的全局特征,将两种特征进行线性融合,实现中文短文本的情感分类。在公开的两个情感分类数据集上验证了多因子权重向量表示方法和融合TextCNN-BiGRU的情感分类模型的有效性,实验结果表明,文中提出的算法较单一模型在短文本情感分类准确率上提高了2%。 相似文献
7.
赵天锐 《智能计算机与应用》2021,11(5):82-87
文本情感分析(又称意见挖掘),是对带有情感倾向的文本进行分析、处理、归纳和推理的过程.本文提出将卷积神经网络(CNN)和双向长短时记忆网络(Bi-LSTM)相结合,作为提取文本特征的方式,而后添加自注意力(Self-Attention)机制形成情感分析模型.通过在自建的NAVER电影评论数据库中进行比较实验,证明本文模... 相似文献
8.
随着互联网应用的快速普及,用户在商品分析、服务评估、影视分享等众多领域发表了大量的评论文本。如何快速识别众多评论文本中的情感倾向,提高文本数据的应用价值,已成为自然语言处理领域关注的热点话题之一。针对此问题,基于BERT和CNN模型对资产维修服务的评论文本进行情感分析,将BERT模型输出的动态字向量送入CNN进行二次表征,并将其与文本序列向量相融合为分类器提供更多的语义信息。实验结果表明,所提出的方法在文本情感分类准确率、F1值上均取得了良好的结果,具有有效性,同时通过对评论文本进行情感分析形成对维修工人的综合评价,实现系统报修工单的智能派单,为企业资产管理系统中资产维修管理模块的优化提供一定的思路。 相似文献
9.
10.
《电子技术与软件工程》2016,(10)
文本是情感表达的重要方式,在挖掘文本包含的情感之前必须要进行预处理。本文对预处理的过程进行综述,包括文本分词、去停用词、特征选择、特征项加权、生成VSM模型、情感词典建立等步骤。 相似文献
11.
与传统的机器学习模型相比,深度学习模型试图模仿人的学习思路,通过计算机自动进行海量数据的特征提取工作。文本分类是自然语言处理中的一个重要应用,在文本信息处理过程中具有关键作用。过去几年,使用深度学习方法进行文本分类的研究激增并取得了较好效果。文中简要介绍了基于传统模型的文本分类方法和基于深度学习的文本分类方法,回顾了先进文本分类方法并重点关注了其中基于深度学习的模型,对近年来用于文本分类的深度学习模型的研究进展以及成果进行介绍和总结,并对深度学习在文本分类领域的发展趋势和研究的难点进行了总结和展望。 相似文献
12.
13.
作为人类精神活动产物的艺术图像,其本身蕴含着丰富的情感语义信息,研究艺术图像的情感分类有助于艺术图像的鉴赏与保护,以图像为对象的情感分类研究已成为情感计算的研究热点,但该分类主要依赖于图像低层特征的抽取,从而导致图像情感分类结果不高.本文提出了一种基于底层特征和注意力机制的艺术图像情感分类模型,即提取艺术图像的CLAH... 相似文献
14.
《电子技术与软件工程》2019,(16)
本文提出了一种基于支持向量机的情感分析方法,首先用python对网页评论信息进行抓取,然后词向量Word2vec模型表示词语及句子,最后用基于支持向量机的情感分析方法对评论中的正面、负面和中性情感进行分类。实验结果表明提出的方法对网络评论情感分析的准确率较高。 相似文献
15.
针对静态词向量存在无法表示多义词,以及传统深度学习模型特征提取能力不足等问题,提出了结合ERNIE2.0(Enhanced language Representation with Informative Entities 2.0)的医疗中文命名实体识别模型。ERNIE2.0模型通过结合词的上下文具体语境进行动态学习,得到词的动态语义表征,解决了一词多义问题。使用BiSRU模型提取医疗文本高维全局序列特征,软注意力机制用于计算每个词的权重大小,由条件随机场输出命名实体的序列标记结果。在标准化数据集上的实验表明,ERNIE2.0-BiSRU-AT-CRF模型的F1值达到了86.74%,优于实验对比的其他模型,证明了模型的有效性。 相似文献
16.
从读者的角度对文本情感进行分类.训练样本集以新闻文章作为样本实例,以文章后读者的投票信息作为样本类别标注的先验知识.针对该不完备的数据集提出了一种半监督学习的分类模型,分类方法采用朴素贝叶斯分类法和EM算法相结合.实验证明该方法不仅简单有效,而且具有较高的分类性能. 相似文献
17.
提出了结合情感词典的改进信息增益特征选择方法。首先,针对现有的信息增益特征选择存在注重特征词的文档频率而忽视语料均衡等问题,提出了改进方法。其次,考虑情感词对文本分类的影响,提出了基于情感词典的特征选择(information gain combining sentiment classification,IGSC)算法进行文本分类。该算法通过对文本情感词进行匹配并结合情感词赋权重,实现了特征降维并解决了文本数据稀疏影响分类性能的问题;最后,针对旅游评论数据集对所提出的特征选择方法进行了实验验证及分析。实验结果表明,本文提出的改进文本情感分类特征选择方法在分类准确率、召回率和F值方面均得到了提升,并且具有较好的分类稳定性。 相似文献
18.
为了解决双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)模型不能解决一词多义、不能充分学习文本深层次语义的问题,提出一种基于Bert-A-BiR的文本情感分析模型.首先,对预训练模型(Bidirectional Encoder Representations from Transformers,BERT)进行微调,利用BERT预训练模型对词向量动态调整,将包含上下文信息的真实语义嵌入模型;其次,利用双向门控循环网络(BiGRU)层对BERT层输出文本进行深层特征采集;再次,引入注意力机制,为采集的深层情感特征分配相应的不同权重;最后,将包含权重信息的情感特征送入softmax层进行情感分类.同时,为了进一步提升模型对文本深层语义的学习能力,设计6组相关模型进行进一步实验验证.实验结果表明,所提出的神经网络模型在IMDB数据集上的最高准确率为93.66%,在SST-5数据集上的最高准确率为53.30%,验证了Bert-BiR-A模型的有效性. 相似文献
19.
20.
神经网络在处理中文文本情感分类任务时,文本显著特征提取能力较弱,学习速率也相对缓慢.针对这一问题,文中提出一种基于注意力机制的混合网络模型.首先对文本语料进行预处理,利用传统的卷积神经网络对样本向量的局部信息进行特征提取,并将其输入耦合输入和遗忘门网络模型,用以学习前后词句之间的联系.随后,再加入注意力机制层,对深层次... 相似文献