首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
李欣欣  解立平  王蒙  张璐 《化工进展》2020,39(2):760-766
设计了一种具有回流的固定床臭氧催化氧化反应装置,对浸渍法制得的α-Fe2O3/γ-Al2O3催化剂的性能进行了表征,并利用其在回流固定床反应装置中对煤化工反渗透浓水的臭氧催化氧化性能进行了研究。结果表明:α-Fe2O3/γ-Al2O3的比表面积、平均孔径、总孔容和活性组分α-Fe2O3含量分别为161.74m2/g、10nm、0.4533cm3/g和8.73%。反渗透浓水COD去除率随催化剂装填高度、臭氧投加浓度和过氧化氢投加量的增加而均呈现为先增加、后降低的变化趋势,回流可显著地提高废水COD去除率,适宜的催化剂装填高度、臭氧投加浓度、过氧化氢投加量和回流比分别为350mm、300mg/L、150mg/L和50%,臭氧催化氧化反渗透浓水的COD去除率达74.33%。煤化工反渗透浓水中大部分溶解性有机物和腐殖酸类物质均被臭氧催化氧化分解。  相似文献   

2.
以浸渍法制备金属复合催化剂Mn-Ti-Mg/Al2O3,采用SEM-EDS、XPS、BET对复合催化剂的表观形貌、原子组成、金属元素的存在状态、比表面积和平均孔径进行表征,并测定了其pHzpc。之后将其作为多相催化剂用于催化臭氧氧化处理煤化工废水,对其催化效果进行研究,考察了催化剂投加量、O3流速、溶液初始pH对其催化效能的影响,并对其稳定性进行了研究。结果表明,Mn-Ti-Mg/Al2O3复合催化剂对于催化臭氧氧化处理煤化工废水效果较好,催化剂投加量和臭氧流速的增加有利于提高煤化工废水COD的去除率,废水在碱性条件下更易被处理。经过催化臭氧氧化处理之后,废水的pH显著降低,导致催化剂中金属活性成分溶出,催化剂活性降低。在温度22℃、溶液初始pH 7.8、催化剂投加质量浓度10 g/L、臭氧流速1.0 mg/min、反应时间40 min条件下,采用Mn-Ti-Mg/Al2O3催化臭氧氧化处理煤化工废水,处理后废水...  相似文献   

3.
通过自制MnO2-CeO2/Al2O3催化剂,采用催化臭氧氧化工艺对煤化工废水进行深度处理,考察了反应时间、臭氧通入量、催化剂装填量、pH值、COD浓度等因素对COD去除率影响。实验结果表明,对于COD质量浓度为1 550 mg/L废水,最适宜的工况条件为臭氧通入量为4 g/h, 1 000 mL废水中填充500 g催化剂,废水pH值>9,反应时间1 h。经检测,B/C达到0.63,处理后的废水具有良好的可生化性,表明该工艺对煤化工废水具有良好的处理效果。经多次重复实验,COD去除率较为稳定,催化剂性能良好,可作为将来工业制备催化剂的参考。  相似文献   

4.
为了提高非均相催化臭氧氧化体系处理难降解有机废水的效率,分别以十六烷基三甲基溴化铵(CTMAB)改性的天然沸石和Fe(NO3)3·9H2O溶液作为载体和活性组分前体,采用浸渍法制备Fe2O3/改性天然沸石催化剂(MNZ),利用能谱仪(EDS)、扫描电镜(SEM)、傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、N2-吸附/脱附等方法分析催化剂的结构和组成,研究其催化臭氧氧化对氯苯酚的效果和催化机制。结果表明:Fe2O3/MNZ催化剂保持了天然沸石的表面结构。Fe2O3均匀负载在沸石表面,属于典型的分子筛结构,比表面积、孔容和孔径分别为12.776m2/g、0.042cm3/g和3.932nm。在对氯苯酚初始浓度为100mg/L、臭氧浓度为2.6mg/L、温度为25℃、pH为7.0±0.2的条件下,对氯苯酚和化学需氧量(COD)去除率分别为87.26%和48.83%。天然沸石与Fe2O3共同促进臭氧分解生成强氧化能力的羟基自由基(·OH),提高了对氯苯酚的去除率,反应体系遵循羟基自由基作用机理。  相似文献   

5.
《煤化工》2021,49(3)
为研究臭氧催化氧化去除煤化工高盐废水难降解有机物的规律,采用浸渍-焙烧法制备催化剂,以实际煤化工高盐废水为样品,研究载体、活性组分对COD去除率的影响,确定最佳臭氧催化剂,并研究有无催化剂、臭氧通气量、臭氧浓度、催化剂投加量对COD去除率的影响,确定最佳工艺参数;在此基础上初步探讨了臭氧催化氧化的反应动力学。研究结果表明:最佳催化剂选择活性氧化铝为载体,铁锰为活性组分;最佳工艺参数为:臭氧通气量1.5 m~3/h,臭氧质量浓度200 mg/L,催化剂投加量0.8 L/L;活性组分选择铁锰时,陶粒基催化剂和活性氧化铝基催化剂的反应速率常数分别是纯臭氧氧化的2.50倍和2.93倍,即臭氧催化氧化可有效提高难降解有机物的反应速率,并提高COD去除率。  相似文献   

6.
刘俊逸  李倩  李杰  曾国平  吴田  杨昌柱 《化工进展》2019,38(11):5158-5164
含酚废水来源广泛自然条件下难以去除,酚类物质毒性大对生态环境和人类生活健康造成了较严重的影响。本文选取了有机废水处理中较为高效的臭氧催化氧化技术,使用臭氧氧源曝气产生大量的含氧自由基,催化氧化降解酚类有机物,同时对活性中心载体进行了优化,选取制备了一类水热稳定性好及机械强度高的多孔材料,使用这些多孔材料对活性中心Fe2O3进行了再组装,合成了一系列表面富集Fe2O3的SBA-15介孔薄膜材料,由于SBA-15材料较大的比表面积、丰富的孔隙结构、高度分散的活性中心,在臭氧催化氧化含酚废水中取得了较好效果。苯酚溶液初始浓度为100mg/L (COD 238mg/L)、Fe2O3(5)/SBA-15催化剂投加量为30g、臭氧气体流量为2mg/min、废水HRT为5min、流量为0.8L/h的条件下,该催化剂能高效连续稳定运行500h不易失活,其COD去除率仍能保持在65%以上,催化剂活性依然保持在83%以上。Fe2O3/SBA-15类介孔催化材料在深度处理含酚废水中具有工业化应用潜质。  相似文献   

7.
为解决煤化工高盐废水COD去除率低带来的蒸发结晶杂盐率高,危废处理费用高的难题,考察了臭氧催化氧化-活性炭吸附耦合工艺对煤化工高盐废水COD的去除效果。对二次反渗透浓盐水开展臭氧催化氧化试验,对其出水开展活性炭吸附试验,最后在最佳工艺下开展臭氧催化氧化-活性炭吸附耦合工艺连续试验。结果表明:臭氧催化氧化试验最佳参数:催化剂投加量700 mg/L,臭氧气体浓度300 mg/L,臭氧通气量1.5 L/min;活性炭吸附试验最佳参数:活性炭投加量80 g/L,吸附时间60 min;在最佳工艺参数下开展耦合工艺100 h连续试验,结果表明:COD去除率稳定在78%~80%,出水COD的质量浓度稳定在80~90 mg/L,臭氧催化氧化-活性炭吸附耦合工艺对高盐废水COD去除效果明显。  相似文献   

8.
研究了臭氧催化氧化降解煤化工高盐废水有机物的机理。实验采集了国内典型煤化工企业高盐废水,明确了水中盐离子的组成及含量;制备高盐性臭氧催化剂,研究了不同活性组分对臭氧催化氧化效率的影响,确定了最佳的臭氧催化剂;对臭氧催化剂开展表征分析,明确催化剂表观形貌、元素组成及负载情况;最后采用甲酸模拟水样,研究臭氧催化氧化作用方式、臭氧衰减率变化、羟基自由基(·OH)变化、H2O2变化及超氧自由基(·O2-)变化,明确臭氧催化氧化作用机理及反应历程。结果表明:煤化工高盐废水阳离子主要为钠离子,其次是钾离子、钙离子、镁离子;阴离子主要为氯离子、硫酸根,其次是硝酸根离子;通过研究不同活性组分对臭氧催化氧化效率确定最佳催化剂为SiO2/Al2O3-Fe2O3。对催化剂开展表征分析发现:催化剂载体为硅铝复合氧化物,铁作为活性组分均匀负载于载体上。臭氧催化氧化降解机理研究发现:臭氧催化氧化过程遵从羟基自由基作用机理,O3通过衰减产生羟基自由基,而催化剂的加入促进了·OH生成;反应过程中产生的H2O2量与·?OH有关,·?OH越多,H2O2产生量越多,但·O2-的产生与·OH没关系。  相似文献   

9.
广东东莞某一家造纸企业污水处理系统的生化池出水具有色度高、难降解的特点。采用臭氧催化氧化工艺深度处理该废水,探究了空速、臭氧投加量以及O3、H2O2物质的量比对COD去除率的影响。通过试验优选出空速为7 h-1,臭氧投加量为70 g/t,O3、H2O2物质的量比为0.5时,出水COD满足GB 18918-2002一级A的要求,为臭氧催化氧化在造纸废水中的应用提供技术支撑。  相似文献   

10.
吴雅琴  熊威  邹方远  李想  杨波  张新 《水处理技术》2022,(1):108-111+117
评估了自制的Fe-Mn/Al2O3(FMA)臭氧催化剂的催化性能,探究了不同质量浓度的Na Cl、Na2SO4、Na NO3和Na HCO3对纯臭氧体系和FMA催化臭氧氧化体系处理对氯苯酚的影响。结果表明:与纯臭氧体系相比,FMA催化臭氧氧化体系对含有Na Cl、Na2SO4和Na NO3对氯苯酚废水的去除效果提升了8%~20%,但对含有Na HCO3的废水去除效果提升不明显。随着Na Cl质量浓度从0(去除率41.3%)到10 000 mg/L(去除率63.1%),纯臭氧体系和催化臭氧氧化体系都受到极大的抑制,去除率分别降低到12.0%和32.4%。当Na HCO3的质量浓度从0到1 000 mg/L时,纯臭氧体系和FMA催化臭氧氧化体系去除污染物质的效果都被一定程度地提升,尤其是纯臭氧体系提升了22.5%,随着质量浓度从1 000 mg/L到1...  相似文献   

11.
雷军 《工业水处理》2024,(3):152-158
为高效去除煤化工生化出水中的有机物,采用浸渍法制备非均相臭氧催化剂,用于催化臭氧氧化处理煤化工生化出水。先以模拟废水为处理对象,分析了催化剂载体种类、活性组分种类及配比、浸渍时间、焙烧温度及焙烧时间等因素对催化剂催化臭氧氧化效果的影响,确定最佳臭氧催化剂组分及制备工艺,之后对优化条件下制备的催化剂开展物性分析,分析了催化剂的表观形貌、微观结构及成分,最后采用实际生化出水开展了催化剂的稳定性评价。结果表明:采用浸渍法,在浸渍时间24 h、焙烧温度550℃、焙烧时间5 h条件下,以γ-Al2O3为载体、以n(Mn)∶n(Fe)∶n(Cu)=2∶1∶1作为活性组分配比制备得到的非均相臭氧催化剂具有较优的催化臭氧氧化性能,实验条件下将其用于催化臭氧氧化处理模拟废水中的难降解有机物,COD去除率高达64.6%;所制备催化剂具有较高的比表面积及介孔,用于中试处理实际煤化工生化出水时结构稳定,应用效果稳定,吨水处理运行费用为4.57元。  相似文献   

12.
采用臭氧催化氧化耦合膜生物反应器(MBR)处理工业高浓度制药废水。考察了臭氧催化氧化不同停留时间的影响,非均相臭氧催化剂的稳定性以及经过臭氧催化氧化后进行生化处理性能。结果表明,臭氧催化氧化停留时间90 min,污泥浓度(MLSS)为10.00 g/L,COD处理负荷为1.2 kg/(m3·d),HRT为18 h条件下,非均相臭氧催化剂对该制药废水具有稳定的COD去除率,经过连续运行50 d每天运行8 h,臭氧催化剂展现出较好的稳定性,COD去除率基本可以稳定在45%左右。臭氧催化氧化耦合MBR组合工艺相比单独MBR工艺其COD去除率提高26%左右、氨氮提高36%左右,其中氨氮满足GB 21903—2008排放要求。  相似文献   

13.
为了获得一种高效低成本处理印染废水的工艺,采用O3催化氧化、O3/H2O2催化氧化两组氧化体系处理工业园区印染废水并对比处理效果和成本投入,考察反应时间、H2O2投加量、O3气体流量和O3气体浓度对工业园区印染废水处理效果的影响。结果表明:采用O3/H2O2催化氧化处理工艺,在进水流量为1.2 m3/h、回流量为2.5 m3/h、O3气体流量为1.0 m3/h、O3进气浓度为16 g/m3、反应时间为60 min的运行条件下,COD由42.03 mg/L降至30.23 mg/L,去除率为28.08%;UV254由0.497 cm-1降至0.315 cm-1  相似文献   

14.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

15.
分别以沉淀法、共沸蒸馏法和高温老化法制备ZrO2载体,采用等体积浸渍法制备Ru/ZrO2催化剂,用于催化湿式氧化法处理异佛尔酮废水。研究了反应温度、催化剂用量及反应时间对异佛尔酮废水乙酸浓度、COD去除率、TOC去除率及废水可生化性的影响。废水经催化湿式氧化处理的中间产物主要为乙酸,可由产甲烷菌转化为甲烷。结果表明,提高反应温度、增加催化剂用量及延长反应时间均可提高异佛尔酮废水COD去除率、TOC去除率及废水可生化性。在270 ℃、氧分压2.5 MPa和催化剂用量9 g·L-1条件下,超过180 min异佛尔酮废水COD及TOC去除率分别可达90.4%和84.9%。在270 ℃、氧分压2.5 MPa和催化剂用量1 g·L-1反应条件下,120 min时异佛尔酮废水乙酸浓度最大,为5 582.98 mg·L-1。催化湿式氧化处理后出水利用产甲烷菌进行厌氧发酵,反应9天产甲烷体积达到最大值820 mL。  相似文献   

16.
采用浸渍法将Fe_2O_3负载在γ-Al_2O_3表面,制备高活性催化剂。采用Fe_2O_3/γ-Al_2O_3/H_2O_2/O_3催化氧化深度处理制药二级生化出水,考察催化剂投加量、pH值、双氧水投加量、臭氧流量等对废水中COD去除率的影响。结果显示,在催化剂投加量3 g/L,废水pH为9,双氧水投加量1 mg/L,臭氧流量1.0 L/min条件下,COD去除率达到85.96%。催化剂循环使用10次后,COD去除率仍然可达到83%以上,证明催化剂稳定性良好。  相似文献   

17.
以活性炭为载体,采用浸渍法制备Ni/C催化剂,应用于臭氧催化氧化腈纶废水技术中。考察了臭氧效率、催化剂投加量、pH及催化氧化时间对腈纶废水COD去除率的影响。结果表明:在臭氧效率50%、催化剂投加量2 g、pH=10.0、催化臭氧氧化时间40 min的实验条件下,对腈纶废水的COD去除率达到83.1%。  相似文献   

18.
采用浸渍法制备CeO_2-Mg O/活性炭催化剂,研究臭氧催化氧化(COP)和尾气利用-臭氧催化氧化(RO-COP)对制药废水中COD和NH_3-N的去除特征。结果表明,当进水COD及NH_3-N的质量浓度平均分别为252.8 mg/L和153.8 mg/L时,在适宜COP工艺条件下(臭氧投加量4.9 g/h、初始p H为11和催化剂投加量1.5 g/L),COD和NH_3-N去除率平均分别为94.31%和99.71%;COD和NH_3-N的反应动力学常数分别为2.11×10-2 min~(-1)和5.01×10~(-2) min~(-1)。在上述工况条件下,经RO-COP处理后,COD及NH_3-N平均去除率分别为96.3%和99.82%,1 m~3尾气中可回收臭氧量为4.21 g,回收率为75.39%。  相似文献   

19.
针对印染废水经常规二级处理后水质不能稳定满足排放和回用要求的问题,对比研究Fenton和臭氧氧化法深度处理印染废水的效果和运行成本,并分别对其工艺参数进行探索优化。实验结果表明,Fenton法深度处理印染废水的最佳工艺条件为pH值3~4、H2O2和COD质量浓度比约为1∶1,色度、苯胺、COD的去除率分别为50%、100%、57%;臭氧法的最佳臭氧投加量为30~40 mg/L,此条件下对色度、苯胺、COD的去除率分别为70%、93%、20%,并通过中试实验验证了臭氧法处理效果的稳定性。运行成本核算结果表明,臭氧法比Fenton氧化法更为经济。  相似文献   

20.
采用酸化曝气—Fenton氧化—臭氧催化氧化工艺处理某天然气净化厂含高浓度MDEA的检修污水,通过实验确定了最佳工艺参数。结果表明,过量浸渍法制备的催化剂中含有大量的活性组分Mn O2,使臭氧氧化对COD、NH3-N的去除率分别提高了13.1%、10.5%,处理后的污水COD从2 600 mg/L降到107 mg/L,NH3-N从176mg/L降到7.48 mg/L,达到了《污水综合排放标准》(GB 8978—1996)二级标准的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号