共查询到12条相似文献,搜索用时 31 毫秒
1.
核反应不停堆换 可避免要采用比较复杂和精致的技术,这种系统必须是可靠 掀料操作必须遥控进行。本文简要介绍了秦山三期CANDU核电厂燃料操作系统,以及不停堆换料,乏燃料运输等情况。 相似文献
2.
详细描述了秦山三期CANDU核电厂的堆芯结构,堆内构件的组成及其功能。这些堆内构件包括排管容器,堆腔室,燃料通道组件和反应性能控制组件。 相似文献
3.
CANDU-6核电厂的设计特征与其它类型反应堆的核电厂很不相同。这些设计特性是CANDU6安全经济运行的主要保证。CANDU-6核电厂的控制和运行特性包括极好的负荷跟踪能力、频率稳定能力和高的容量因子,而运行管理特点包括不停堆换料以及由于使用重水作冷却剂和慢化剂和相关的重水管理问题。 相似文献
4.
秦山三期CANDU核电厂热传输系统 总被引:1,自引:0,他引:1
热传输系统利用高压重水作为工质将大量的热能从芯传输到蒸汽发生器,产生蒸汽去推动汽轮机。为了使热传输系统在电厂动态条件下安全可靠地运行 ,需要一些辅助和控制系统的配合。本文介绍正在建设的泰山三期CANDU核电厂的热传输系统。 相似文献
5.
CANDU堆是世界上达到充分成熟且成功发展的少数几种堆型之一。这种堆的设计概念的基本出发 是使用天然铀燃料,这一选择决定了其它几个有利的选择,例如采用重水慢化剂,不停堆换料以及计划机控制。采用重水慢化剂和增大输出功率的需求决定了压力管式堆芯结构的设计方案。 相似文献
6.
7.
分别从设计特点,堆内外试验验证和堆内运行经验等方面阐述了CANDU重水堆燃料具有高的性能的原因。为实现不停堆换料能力,CANDU-6采用了独特的燃料设计,1985-1996年10年内,在565000组37根棒的卸料组件中,其破损率已由从前的0.1%降至0.04%,相应的单根燃料破损率在23*10^-5以下。 相似文献
8.
秦山三期CANDU核电厂简介 总被引:3,自引:1,他引:2
泰山三期核电厂的两台机组属最新的700MW级CANDDU-6重水堆机组。这种核电机组总共有8台已经投入商业运行,3台在建造,第一台CANDU-6机组于1983年投入商业运行。CANDU-6的初始设计源于很成功的皮克灵A核电的单化版本。 相似文献
9.
秦山CANDU项目的计算机辅助设计 总被引:2,自引:1,他引:1
简要介绍了加拿大原子能公司在秦山CANDU项目设计中应用计算机辅助设计与工程管理工具的情况。本文介绍了其它专用程序软件及应用。对使用的独立 的非CADD工具也作了介绍。 相似文献
10.
CANDU反应堆物理程序和方法 总被引:3,自引:3,他引:0
简要介绍了加拿大原子能公司目前用于CANDU反应物理设计和分析的计算机程序和方法,对栅元,超栅元和堆芯三种计算方法及相应的计算机程序进行了讨论。对物理分析中每 理论表达和应用的求解方法也作了说明。 相似文献
11.
《Journal of Nuclear Science and Technology》2013,50(9):855-867
The reduction of manpower in operation and maintenance by simplification of the system are essential to improve the safety and the economy of future light water reactors. At the Japan Atomic Energy Research Institute (JAERI), a concept of a simplified passive safety reactor system JPSR was developed for this purpose and in the concept minimization of developing work and conservation of scale-up capability in design were considered. The inherent matching nature of core heat generation and heat removal rate is introduced by the core with high reactivity coefficient for moderator density and low reactivity coefficient for fuel temperature (Doppler effect) and once-through steam generators (SGs). This nature makes the nuclear steam supply system physically-slave for the steam and energy conversion system by controlling feed water mass flow rate. The nature can be obtained by eliminating chemical shim and adopting in-vessel control rod drive mechanism (CRDM) units and a low power density core. In order to simplify the system, a large pressurizer, canned pumps, passive residual heat removal systems with air coolers as a final heat sink and passive coolant injection system are adopted and the functions of volume and boron concentration control and seal water supply are eliminated from the chemical and volume control system (CVCS). The emergency diesel generators and auxiliary component cooling system of “safety class” for transferring heat to sea water as a final heat sink in emergency are also eliminated. All of systems are built in the containment except for the air coolers of the passive residual heat removal system. The analysis of the system revealed that the primary coolant expansion in 100% load reduction in 60 s can be mitigated in the pressurizer without actuating the pressure relief valves and the pressure in 50% load change in 30 s does not exceed the maximum allowable pressure in accidental conditions in regardless of pressure regulation. 相似文献
12.
《Journal of Nuclear Science and Technology》2013,50(9):746-754
A “Multiple Recycling” mode of fuel management is proposed for effectively utilizing weapon-grade plutonium from discarded military material to compensate plutonium degradation in repeatedly-reprocessed mixed-oxide (MOX) fuel. Comparative calculations on core performance are undertaken for comparison between the proposed fuel management mode of Multiple Recycling—using recovered depleted plutonium upgraded by admixture with weapon-grade plutonium while retaining unincreased the total plutonium” content—and a reference mode of using repeatedly reprocessed spent MOX fuel with plutonium upgraded through increase of the plutonium content. Multiple Recycling proves all calculated safety parameters to be retained unimpaired through multiple cycles of MOX fuel reprocessing, whereas in the reference mode of refueling with spent MOX fuel reprocessed without upgrading with weapon-grade plutonium, many of the calculated safety parameters come to exceed stipulated limits with repetition of fuel cycles. Moreover, Multiple Recycling mode can be implemented with application solely of techniques already practiced in the fabrication of MOX fuel. 相似文献