共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanofluidic devices are rapidly emerging as tools uniquely suited to transport and interrogate single molecules. We present a simple method to rapidly obtain compact surfactant nanotube networks of controlled geometry and length. The nanotubes, 100-300 nm in diameter, are pulled from lipid vesicles using a micropipet technique, with multilamellar vesicles serving as reservoirs of surfactant material. In a second step, the nanotubes are wired around microfabricated SU-8 pillars. In contrast to unrestrained surfactant networks that minimize their surface free energy by minimizing nanotube path length, the technique presented here can produce nanotube networks of arbitrary geometries. For example, nanotubes can be mounted directly on support pillars, and long stretches of nanotubes can be arranged in zigzag patterns with turn angles of 180 degrees. The system is demonstrated to support electrophoretic transport of colloidal particles contained in the nanotubes down to the limit of single particles. We show that electrophoretic migration velocity is linearly dependent on the applied field strength and that a local narrowing of the nanotube diameter results from adhesion and bending around SU-8 pillars. The method presented here can aid in the fabrication of fully integrated and multiplexed nanofluidic devices that can operate with single molecules. 相似文献
2.
Fast mass transport through carbon nanotube membranes 总被引:1,自引:0,他引:1
The May 19, 2006 issue of Science included a paper by Holt et al. on "Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes". The paper was also featured on the cover, showing methane molecules translating inside a carbon nanotube (CNT). The authors explained how they prepared 2-6-mum thin membranes consisting of double-walled carbon nanotubes (DWNTs) all aligned perpendicular to the apparent membrane surface. These tubes are open at both ends and the space between the tubes is filled with dense Si(3)N(4). Pure gas and water fluxes were measured at room temperature with the application of a small pressure difference. Interpretation of the results led to the conclusion that the membranes showed much higher fluxes than what was estimated from Knudsen gas diffusion and Poiseuille viscous flow models. The membranes have a straight-channel morphology with a narrow pore-size distribution and exceptionally smooth pore walls. The unusual geometry and surface properties make it difficult to compare the membrane's properties with common membranes but there is no question that the mass transport in the aligned DWNTs is fast indeed. To appreciate how fast, we will consider their transport properties starting from the perspective of "conventional" porous membrane technology. Recent molecular dynamics simulations suggest that none of the classic models for gas (Knudsen) and water (Poiseuille) permeation work in a meaningful way for these nanotube membranes, and new models are needed. 相似文献
3.
Carbon nanotube (CNT) membranes offer an exciting opportunity to mimic natural protein channels due to (1) a mechanism for dramatically enhanced fluid flow, (2) ability to place ‘gatekeeper’ chemistry at the entrance to pores, and (3) being electrically conductive to localize electric field or perform electrochemical transformations. The transport mechanisms through CNT membranes are primarily (1) ionic diffusion near bulk expectation, (2) gas flow enhanced 1-2 orders of magnitude primarily due to specular reflection, and (3) fluid flow 4-5 orders of magnitude faster than conventional materials due to a nearly ideal slip-boundary interface. Transport can be modulated by ‘gatekeeper’ chemistry at the pore entrance using steric hindrance, electrostatic attraction/repulsion, or biochemical state. Electroosmotic flow is seen to be highly power efficient and can act as a pump through regions of chemical selectivity. The fundamental requirements of mimicking protein channels are present in the CNT membrane system. This membrane structure is mechanically far more robust than lipid bilayer films, allowing for large-scale chemical separations, delivery or sensing based on the principles of protein channels. Applications ranging from water purification, energy generation and bio-separations are highlighted. 相似文献
4.
Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes 总被引:1,自引:0,他引:1
We demonstrate here that water can be efficiently wet and pumped through superhydrophobic aligned multiwalled nanotube membranes by application of a small positive dc bias. At a critical bias ( approximately 1.7 V), with the membrane acting as anode, there is an abrupt transition from a superhydrophobic to hydrophilic state. Interestingly, this phenomenon is strongly polarity dependent; for a negative bias applied to the membrane, 2 orders of magnitude higher bias is required for the transition. The polarity and voltage-dependent wetting that we report could be used to controllably wick fluids through nanotube membranes and could find various applications. 相似文献
5.
Carbon nanotubes have significant promise as gas separation membranes. Gas permeation through nanopores involves mass transfer resistances from molecules entering and leaving pores (so-called surface resistances) and diffusion within the pores. We use molecular simulations to give the first estimates of surface resistances for gas transport through nanotubes. For CH4 transport through (20,0) carbon nanotubes at 300 K, surface resistances are small for nanotubes 5-10 mum in length but can be significant for shorter nanotubes. 相似文献
6.
Effect of thiol chemisorption on the transport properties of gold nanotubule membranes 总被引:1,自引:0,他引:1
An electroless gold deposition method was used to deposit Au nanotubules within the pores of a polycarbonate template membrane. Membranes containing Au nanotubules with inside diameters of 2 and 3 nm were prepared for these studies. Thiols were chemisorbed to the inside tubule walls in order to change the chemical environment within the tubules. The effect of the chemical environment within the tubules on the transport properties of the tubule-containing membrane was investigated. Membranes modified with HS-C(16)H(33) preferentially transported hydrophobic permeant molecules. When a homologous series of permeant molecules was used, the most hydrophobic permeant was preferentially partitioned into and transported by the HS-C(16)H(33) derivatized membrane. In addition, the effect of alkyl chain length (R), in a homologous series of thiols R-SH, was investigated. Hydrophobic permeant molecules were preferentially partitioned into and transported by membranes containing the largest alkyl group. In contrast, membranes modified with HS-C(2)H(4)OH preferentially transported the more hydrophilic permeant pyridine. Finally, we show here that the HS-C(16)H(33) derivatized membrane can be used to separate hydrophobic species from hydrophilic species. 相似文献
7.
We present a simple, fast, and practical route to vertically align carbon nanotubes on a porous support using a combination of self-assembly and filtration methods. The advantage of this approach is that it can be easily scaled up to large surface areas, allowing the fabrication of membranes for practical gas separation applications. The gas transport properties of thus constructed nanotube/polymer nanocomposite membranes are analogous to those of carbon nanotube membranes grown by chemical vapor deposition. This paper shows the first data for transport of gas mixtures through carbon nanotube membranes. The permeation of gas mixtures through the membranes exhibits different properties than those observed using single-gas experiments, confirming that non-Knudsen transport occurs. 相似文献
8.
9.
There is increasing interest in investigating transport and electrochemical phenomena in synthetic membrane samples that contain a single pore of nanoscopic diameter. Approaches used to date for preparing such single-nanopore membranes include microfabrication-based methods, the track-etch method, and a method based on the incorporation of a single fullerene nanotube within a synthetic membrane. We describe here an alternative approach that we believe is easier and more accessible than the previously described methods. This method is based on a very low pore density track-etch membrane obtained from commercial sources. Fluorescence microscopy is used to identify and isolate a single nanopore in this membrane. Membrane samples containing single nanopores with diameters as small as 30 nm have been prepared. Furthermore, we show here that an electroless plating method can be used to deposit a gold nanotube within the single nanopore, and this provides a route for further decreasing the inside diameter of the pore. A single-nanotube membrane with an electrochemically determined inside diameter of approximately 2 nm was prepared and evaluated. 相似文献
10.
Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips 总被引:1,自引:0,他引:1
Laser-patterning of nanoporous membranes at the junction of a cross channel in a microchip is used to integrate protein concentration with an electrokinetic injection scheme. Upon application of voltage, linear electrophoretic concentration of charged proteins is achieved at the membrane surface because buffer ions can easily pass through the membrane while proteins larger than the molecular weight cutoff of the membrane (>5700) are retained. Simple buffer systems can be used, and the concentration results constitute outward evidence that the uniformity of buffer ion concentration is maintained throughout the process. Local and spatially averaged concentration are increased by 4 and 2 orders of magnitude, respectively, upon injection with moderate voltages (70-150 V) and concentration times (100 s). The degree of concentration is limited only by the solubility limit of the proteins. The porous polymer membrane can be used repeatedly as long as care is taken to avoid protein precipitation. 相似文献
11.
We report the integration of a complex biological system and a nanoelectronic device, demonstrating that both components retain their functionality while interacting with each other. As the biological system, we use the cell membrane of Halobacterium salinarum. As the nanoelectronic device, we use a nanotube network transistor, which incorporates many individual nanotubes in such a way that entire patches of cell membrane are contacted by nanotubes. We demonstrate that the biophysical properties of the membrane are preserved, that the nanoelectronic devices still function as transistors, and that the two systems interact. Further, we use the interaction to study the charge distribution in the biological system, finding that the electric dipole of the membrane protein bacteriorhodopsin is located 2/3 of the way from the extracellular to the cytoplasmic side. 相似文献
12.
We study the catalytic capability of unsupported single-walled helical gold nanotubes Au(5,3) by using density functional theory. We use the CO oxidation as a benchmark probe to gain insights into high catalytic activity of the gold nanotubes. The CO oxidation, catalyzed by the Au(5,3) nanotube, proceeds via a two-step mechanism, CO + O2 --> CO2 +O and CO + O --> CO2. The CO oxidation is initiated by the CO + O2 --> OOCO --> CO2 + O reaction with an activation barrier of 0.29 eV. On the reaction path, a peroxo-type O-O-CO intermediate forms. Thereafter, the CO + O --> CO2 reaction proceeds along the reaction pathway with a very low barrier (0.03 eV). Note that the second reaction cannot be the starting point for the CO oxidation due to the energetically disfavored adsorption of free O2 on the gold nanotube. The high catalytic activity of the Au(5,3) nanotube can be attributed to the electronic resonance between electronic states of adsorbed intermediate species and Au atoms at the reaction site, particularly among the d states of Au atom and the antibonding 2pi* states of C-O and O1-O2, concomitant with a partial charge transfer. The presence of undercoordinated Au sites and the strain inherent in the helical gold nanotube also play important roles. Our study suggests that the CO oxidation catalyzed by the helical gold nanotubes is likely to occur at the room temperature. 相似文献
13.
14.
15.
Quoc Ngo Petranovic D. Krishnan S. Cassell A.M. Qi Ye Jun Li Meyyappan M. Yang C.Y. 《Nanotechnology, IEEE Transactions on》2004,3(2):311-317
In this paper, we examine mechanisms of electron transport across the metal-carbon nanotube (CNT) interface for two different types of multiwall carbon nanotube (MWNT) architectures, horizontal or side-contacted MWNTs and vertical or end-contacted MWNTs. Horizontally aligned nanotube growth and electrical characteristics are examined with respect to their potential applications in silicon-based technologies. Recent advances in the synthesis techniques of vertical MWNTs have also enhanced the possibility for a manufacturable solution incorporating this novel material as on-chip interconnects or vias as copper interconnect feature sizes are scaled into the sub-100-nm regime. A vertical MWNT architecture is presented that may be suitable for integration into silicon-based technologies. The growth method for this architecture and its effect on electrical characteristics are examined. Through simulations, dc measurements, and comparison of our results with previous studies, we explain why high contact resistance is observed in metal-CNT-metal systems. 相似文献
16.
The hole transport properties of poly(2-methoxy, 5-(2'-ethyl-hexoxy)-p-phenylene vinylene) (MEH-PPV) blended with acid oxidized multiwall carbon nanotubes (COOH-MWCNTs) were investigated in a diode configuration using the time-of-flight (TOF) photocurrent method. While the room temperature hole mobility in pure MEH-PPV films was non-dispersive with positive field dependent mobility, MEH-PPV:COOH-MWCNT blended devices exhibited dispersive transport and negative field dependent mobility. This indicates that the hole mobility in this composite is influenced by positional disorder caused by the presence of COOH-MWCNTs in the MEH-PPV matrix. These results strongly suggest that the distribution of COOH-MWCNTs optimising in the organic matrix is important for charge transport in the high mobility nanotube component to be activated, when used in hybrid material systems. 相似文献
17.
Structure and local lateral electrical properties of Au films of thicknesses ranging from 10 to 140 nm are studied using conductive atomic force microscopy. Comparison of current maps taken at different thicknesses reveals surprising highly resistive regions (1010-1011 Ω), the density of which increases strongly at lower thickness. The high resistivity is shown to be directly related to discontinuities in the metal sheet. Local I-V curves are acquired to show the nature of electrical behavior relative to thickness. Results show that in Au films of higher thickness the electrical behavior is ohmic, while it is non-ohmic in highly discontinuous films of lower thickness, with the transition happening between 34 and 39 nm. The non-ohmic behavior is explained with tunneling occurring between separated Au islands. The results explain the abrupt increase of electrical resistivity at lower thin film thicknesses. 相似文献
18.
Anaïs Loubat Walter Escoffier Lise-Marie Lacroix Guillaume Viau Reasmey Tan Julian Carrey Bénédicte Warot-Fonrose Bertrand Raquet 《Nano Research》2013,6(9):644-651
We investigate the charge transport in close-packed ultra-narrow (1.5 nm diameter) gold nanowires stabilized by oleylamine ligands. We give evidence of charging effects in the weakly coupled one-dimensional (1D) nanowires, monitored by the temperature and the bias voltage. At low temperature, in the Coulomb blockade regime, the current flow reveals an original cooperative multi-hopping process between 1D-segments of Au-NWs, minimising the charging energy cost. Above the Coulomb blockade threshold voltage and at high temperature, the charge transport evolves into a sequential tunneling regime between the nearest- nanowires. Our analysis shows that the effective length of the Au-NWs inside the bundle is similar to the 1D localisation length of the electronic wave function (of the order of 120 nm _+ 20 nm), but almost two orders of magnitude larger than the diameter of the nanowire. This result confirms the high structural quality of the Au-NW segments. 相似文献
19.
Efforts were made to realise a two-dimensional, on-line-coupled isotachophoresis-capillary zone electrophoresis system. The electrophoretic behaviour of gold nanoparticles was investigated with the idea that they could be used to improve the control of this electrophoretic set-up. The well-known citrate-ligated gold nanoparticles were not suitable for this application, because the ligand was desorbed, and the nanoparticle solutions were degraded. Therefore mercaptocarboxylic acids were used, because the chemisorption of thiols on the gold surface was improved. Isotachophoretic measurements were carried out with these nanoparticles. A size-dependent electrophoretic mobility was found according to theoretical predictions, and the surface and zeta-potential were discussed for the small particle range. A new method for concentration measurements of nanoparticles is presented by means of isotachophoresis. 相似文献
20.
Quan Liu Xuefeng Wang Daniel De Kee 《International Journal of Engineering Science》2005,43(19-20):1464-1470
This paper deals with non-Fickian mass transport through polymeric membranes. The process is described via continuum mechanics. We introduced an appropriate function relating the stress to concentration and time, such that the model predicts a realistic stress distribution at equilibrium also. The effect of different dimensionless groups is illustrated and quantitative agreement with experimental data is shown for transport of organic solvents through PVC. 相似文献