首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以对粉尘云状态参数的定量测定为基础,对玉米粉尘火焰在开口垂直管道中向上传播的过程进行了实验研究.在情形A中,火焰从管道的封闭端向开口端传播,在情形B中,从开口端向封闭端传播.实验中,观察到两种粉尘火焰,即湍流火焰和层流火焰,火焰形态转变对应的点火延迟时间约等于1.1 s,即粉尘云湍流运动强度为10cm/s.情形A中,层流火焰的传播出现周期性振荡现象,湍流火焰在传播过程中不断加速;情形B中,两种火焰都匀速传播,湍流火焰传播速度明显大于层流火焰.在所考察的实验条件下,粉尘浓度对于玉米粉尘火焰传播速度的影响不大.  相似文献   

2.
Three theories of the liftoff of a turbulent jet flame were assessed using cinema-particle imaging velocimetry movies recorded at 8000 images/s. The images visualize the time histories of the eddies, the flame motion, the turbulence intensity, and streamline divergence. The first theory assumes that the flame base has a propagation speed that is controlled by the turbulence intensity. Results conflict with this idea; measured propagation speeds remains close to the laminar burning velocity and are not correlated with the turbulence levels. Even when the turbulence intensity increases by a factor of 3, there is no increase in the propagation speed. The second theory assumes that large eddies stabilize the flame; results also conflict with this idea since there is no significant correlation between propagation speed and the passage of large eddies. The data do support the “edge flame” concept. Even though the turbulence level and the mean velocity in the undisturbed jet are large (at jet Reynolds numbers of 4300 and 8500), the edge flame creates its own local low-velocity, low-turbulence-level region due to streamline divergence caused by heat release. The edge flame has two propagation velocities. The actual velocity of the flame base with respect to the disturbed local flow is found to be nearly equal to the laminar burning velocity; however, the effective propagation velocity of the entire edge flame with respect to the upstream (undisturbed) flow exceeds the laminar burning velocity. A simple model is proposed which simulates the divergence of the streamlines by considering the potential flow over a source. It predicts the well-established empirical formula for liftoff height, and it agrees with experiment in that the controlling factor is streamline divergence, and not turbulence intensity or large eddy passage. The results apply only to jet flames for Re<8500; for other geometries the role of turbulence could be larger.  相似文献   

3.
Numerical simulations are performed to study the flame propagation of laminar stratified syngas/air flames with the San Diego mechanism. Effects of fuel stratification, CO/H2 mole ratio and temperature stratification on flame propagation are investigated through comparing the distribution of flame temperature, heat release rate and radical concentration of stratified flame with corresponding homogeneous flame. For stratified flames with fuel rich-to-lean and temperature high-to-low, the flame speeds are faster than homogeneous flames due to more light H radical in stratified flames burned gas. The flame speed is higher for case with larger stratification gradient. Contrary to positive gradient cases, the flame speeds of stratified flames with fuel lean-to-rich as well as with temperature low-to-high are slower than homogeneous flames. The flame propagation accelerates with increasing hydrogen mole ratio due to higher H radical concentration, which indicates that chemical effect is more significant than thermal effect. Additionally, flame displacement speed does not match laminar flame speed due to the fluid continuity. Laminar flame speed is the superposition of flame displacement speed and flow velocity.  相似文献   

4.
In the present study, we conducted experiments to investigate the effects of external turbulence on the development of spherical H2/CH4/air unstable flames developments at two different equivalence ratios associated with different turbulent intensities using a spherical constant-volume turbulent combustion bomb and high speed schlieren photography technology. Flame front morphology and acceleration process were recorded and different effects of weak external turbulent flow field and intrinsic flame instability on the unstable flame propagation were compared. Results showed the external turbulence has a great influence on the unstable flame propagation under rich fuel conditions. For fuel-lean premixed flames, however, the effects of external turbulence on the morphology of the cellular structure on the flame front was not that obvious. Critical radius decreased firstly and then kept almost unchanged with the augment of the turbulence intensity. This indicated the dominating inhibiting effect of flame stretch on the turbulent premixed flame at the initial stage of the flame front development. Beyond the critical radius, the acceleration exponent was found increasing with the enhancement of initial turbulence intensity for fuel-lean premixed flames. For fuel-rich conditions, however, the initial turbulence intensity had little effect on acceleration exponent. In order to evaluate the important impact of the intrinsic flame instability and external turbulent flow field for spherical propagating premixed flames, intrinsic flame instability scale and average diameter of vortex tube were calculated. Intrinsic flame instability scale decreased greatly and then stayed unchanged with the propagation of the flame front. The comparison between intrinsic flame instability scale and average diameter of vortex tube demonstrated that the external turbulent flow filed will be more important for the evolution of wrinkle structure in the final stage of the flame propagation, when the turbulence intensity was more than 0.404 m/s.  相似文献   

5.
Various factors affecting the determination of laminar flames speeds from outwardly propagating spherical flames in a constant-pressure combustion chamber were considered, with emphasis on the nonlinear variation of the stretched flame speed to the flame stretch rate, and the associated need to nonlinearly extrapolate the stretched flame speed to yield an accurate determination of the laminar flame speed and Markstein length. Experiments were conducted for lean and rich n-butane/air flames at initial pressure, demonstrating the complex and nonlinear nature of the dynamics of flame evolution, and the strong influences of the ignition transient and chamber confinement during the initial and final periods of the flame propagation, respectively. These experimental data were analyzed using the nonlinear relation between the stretched flame speed and stretch rate, yielding laminar flame speeds that agree well with data determined from alternate flame configurations. It is further suggested that the fidelity in the extraction of the laminar flame speed from expanding spherical flames can be facilitated by using small ignition energy and a large combustion chamber.  相似文献   

6.
Zheng Chen 《Combustion and Flame》2010,157(12):2267-2276
Large discrepancies between the laminar flame speeds and Markstein lengths measured in experiments and those predicted by simulations for ultra-lean methane/air mixtures bring a great concern for kinetic mechanism validation. In order to quantitatively explain these discrepancies, a computational study is performed for propagating spherical flames of lean methane/air mixtures in different spherical chambers using different radiation models. The emphasis is focused on the effects of radiation and compression. It is found that the spherical flame propagation speed is greatly reduced by the coupling between thermal effect (change of flame temperature or unburned gas temperature) and flow effect (inward flow of burned gas) induced by radiation and/or compression. As a result, for methane/air mixtures near the lean flammability limit, the radiation and compression cause large amounts of under-prediction of the laminar flame speeds and Markstein lengths extracted from propagating spherical flames. Since radiation and compression both exist in the experiments on ultra-lean methane/air mixtures reported in the literature, the measured laminar flame speeds and Markstein lengths are much lower than results from simulation and thus cannot be used for kinetic mechanism validation.  相似文献   

7.
Laminar flame speeds measured using the propagating spherical flame method are inherently affected by radiation. Under certain conditions, a substantial uncertainty in laminar flame speed measurement is caused by radiation, which results in a great concern for kinetic mechanism validation and development. In this study, numerical simulations with detailed chemistry and different radiation models are conducted to examine the effects of radiation on spherical flame propagation. The emphasis is placed on quantifying the uncertainty and corrections associated with radiation in laminar flame speed measurements using propagating spherical flames. The radiation effects on flame speeds at normal and elevated temperatures and pressures are examined for different fuel/air mixtures including methane, propane, iso-octane, syngas, hydrogen, dimethyl ether, and n-heptane. The radiative effects are conservatively evaluated without considering radation reflection on the wall. It is found that radiation-induced uncertainty in laminar flame speeds is affected in the opposite ways by the initial temperature and pressure. An empirical correlation quantifying the uncertainty associated with radiation is obtained. This correlation is shown to work for different fuels at normal and elevated temperatures and pressures. Therefore, it can be directly used in spherical flame experiments measuring the laminar flame speed. Furthermore, a method to obtain the radiation-corrected flame speed (RCFS) is presented and it can be used for laminar flame speed measurement using the propagating spherical flame method.  相似文献   

8.
A filtered tabulated chemistry model for LES of premixed combustion   总被引:1,自引:0,他引:1  
A new modeling strategy called F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) is developed to introduce tabulated chemistry methods in Large Eddy Simulation (LES) of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when subgrid scale turbulence vanishes as LES should tend toward Direct Numerical Simulation (DNS). The filtered flame structure is mapped using 1-D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed in a fully compressible formulation. The methodology is first applied to 1-D filtered laminar flames, showing the ability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by including subgrid scale wrinkling effects in the flame front propagation. Finally, preliminary tests of LES in a 3-D turbulent premixed flame are performed.  相似文献   

9.
Molecular transport effects on turbulent flame propagation and structure   总被引:1,自引:0,他引:1  
Various experimental and DNS data show that premixed combustion is affected by the differences between the coefficients of molecular transport of fuel, oxidant, and heat not only at weak but also at moderate and high turbulence. In particular, turbulent flame speed increases with decreasing the Lewis number of the deficient reactant, the effect being very strong for lean hydrogen mixtures. Various concepts; flame instability, flame stretch, local extinction, leading point, that aim at describing the effects of molecular transport on turbulent flame propagation and structure are critically discussed and the results of relevant studies of perturbed laminar flames (unstable flames, flame balls, flames in vortex tubes) are reviewed. The crucial role played by extremely curved laminar flamelets in the propagation of moderately and highly turbulent flames is highlighted and the relevant physical mechanisms are discussed.  相似文献   

10.
For flames with very low burning speed, the flame propagation is affected by buoyancy. Flame front evolution and laminar flame parameter evaluation methods of buoyancy-affected flame have been proposed. The evolution and propagation process of a center ignited expanding ammonia/air flame has been analyzed by using the methods. The laminar flame parameters of ammonia/air mixture under different equivalence ratio (ER) and initial pressure have been studied. At barometric pressure, with the increase of ER, the laminar burning velocity (LBV) of ammonia/air mixture undergoes a first increase and then decrease process and reaches its maximum value of 7.17 cm/s at the ER of 1.1, while the Markstein length increases monotonously. For ammonia/air flames with ER less than unity, the flame velocity shows a decreasing trend with stretch rate, resulting in the propensity to flame instability, but no cellular structure was observed in the process of flame propagation. As the initial pressure increases, the LBV decreases monotonously as well as the Markstein length. The flame thicknesses of ammonia/air mixtures decrease with initial pressure and are much thicker than those of hydrogen flames, which makes a stronger stabilizing effect of curvature on the flame front. The most enhancement of LBV is contributed by the dehydrogenation reaction of NH3 with OH. The NO concentration decreases significantly with the increase of ER.  相似文献   

11.
The structure of a time-dependent methane/enriched-air flame established in an axisymmetric, laminar counterflow configuration is investigated, as the flame interacts with two counterpropagating toroidal vortices. Computationally, the time-dependent equations are written using a modified vorticity–velocity formulation, with detailed chemistry and transport, and are solved implicitly on a nonstaggered, nonuniform grid. Boundary conditions are chosen to create local extinction and reignition in the vicinity of the axis of symmetry. Experimentally, CO planar laser-induced fluorescence (PLIF), OH PLIF, and an observable proportional to the forward reaction rate (RR) of the reaction CO+OH→CO2+H are measured. Particle image velocimetry (PIV) is used to characterize the velocity field of the vortical structures and to provide detailed boundary conditions for the simulations. Excellent agreement is found between model and experiments to the minutest morphological details throughout the interaction. The validated model is then used to probe the dynamics of the two-dimensional extinction process with high temporal resolution. During the initial phase of the interaction, the flame is locally extinguished by the two vortices. The resulting edge flame propagates outward as an extinction front, with a structure that does not depart significantly from that of a diffusion flame. The front recedes from the axis of symmetry with a negative propagation speed that reaches a value as large as six times that of the freely propagating laminar flame with the same reactant concentrations found at the stoichiometric surface. As the front propagates outward, it transitions to an ignition front, and it reaches a positive propagation speed comparable to that of the freely propagating laminar flame. During this transition, it develops a characteristic premixed “hook,” with a lean premixed branch, a stoichiometric segment that evolves into the remnant of the original primary diffusion flame, and a much weaker secondary diffusion flame resulting from a secondary peak in heat release in the original unperturbed diffusion flame. No evidence of a distinct rich premixed flame is found. The edge flame stabilizes at a radial location where the local gaseous speed equals the propagation speed of the front. When the local perturbation has decayed below the flame propagation speed, the flame edge starts reigniting the mixing layer as an ignition wave that propagates with an essentially frozen structure along the stoichiometric surface until the original diffusion flame structure is fully recovered. Implications for flamelet modeling of turbulent flames with local extinction are discussed.  相似文献   

12.
The main purpose of this study is to investigate the effects of hydrogen addition on the laminar flame speeds of methane, ethane and propane. In this work, a flat flame method was used to measure the laminar flame speed in a counter-flow configuration combined with particle image velocimetry (PIV) system. The results indicate that with the increase of hydrogen amount, the laminar flame speeds of methane, ethane and propane increase linearly approximately. In addition, as hydrogen is increased, the flame speed of methane has the maximum increasing amplitude among them, which indicates that methane is more sensitive to hydrogen addition in flame speed than the other two fuels.Simulation analysis finds that the reaction R1: H + O2 ? OH + O can promote the flame speeds of these three kinds of gaseous fuel obviously, and with the increase of hydrogen amount, the promoting effect is more obviously. Therefore, the main reason why hydrogen addition could increase flame speed is that the increase of H radical prompts reaction R1 to proceed in the forward direction. Comparing the flames of methane, ethane and propane mixed with hydrogen, it was found that the promotion of reaction R1 to the methane/hydrogen mixtures flame speed is strongest, and its free radicals concentration in flame increase more obviously. Therefore, hydrogen addition has a greater effect on the flame speed of methane than on that of ethane and propane.  相似文献   

13.
Z.S. Li  B. Li  X.S. Bai 《Combustion and Flame》2010,157(6):1087-3929
High resolution planar laser-induced fluorescence (PLIF) was applied to investigate the local flame front structures of turbulent premixed methane/air jet flames in order to reveal details about turbulence and flame interaction. The targeted turbulent flames were generated on a specially designed coaxial jet burner, in which low speed stoichiometric gas mixture was fed through the outer large tube to provide a laminar pilot flame for stabilization of the high speed jet flame issued through the small inner tube. By varying the inner tube flow speed and keeping the mixture composition as that of the outer tube, different flames were obtained covering both the laminar and turbulent flame regimes with different turbulent intensities. Simultaneous CH/CH2O, and also OH PLIF images were recorded to characterize the influence of turbulence eddies on the reaction zone structure, with a spatial resolution of about 40 μm and temporal resolution of around 10 ns. Under all experimental conditions, the CH radicals were found to exist only in a thin layer; the CH2O were found in the inner flame whereas the OH radicals were seen in the outer flame with the thin CH layer separating the OH and CH2O layers. The outer OH layer is thick and it corresponds to the oxidation zone and post-flame zone; the CH2O layer is thin in laminar flows; it becomes broad at high speed turbulent flow conditions. This phenomenon was analyzed using chemical kinetic calculations and eddy/flame interaction theory. It appears that under high turbulence intensity conditions, the small eddies in the preheat zone can transport species such as CH2O from the reaction zones to the preheat zone. The CH2O species are not consumed in the preheat zone due to the absence of H, O, and OH radicals by which CH2O is to be oxidized. The CH radicals cannot exist in the preheat zone due to the rapid reactions of this species with O2 and CO2 in the inner-layer of the reaction zones. The local PLIF intensities were evaluated using an area integrated PLIF signal. Substantial increase of the CH2O signal and decrease of CH signal was observed as the jet velocity increases. These observations raise new challenges to the current flamelet type models.  相似文献   

14.
The effects of chemi-ion current induced flow perturbations in a premixed, laminar propane/air flame at atmospheric pressure have been measured with 30 ms-wide applied pulsed voltages. Single-shot OH and acetone planar laser-induced fluorescence (PLIF) images have been collected to measure the spatio-temporal structural changes to a laminar flame with incoming flow speed of 2 m/s in response to positive polarity voltage pulses of 2.8 kV over a 20 mm electrode gap. OH and acetone PLIF are specifically chosen to measure reaction zone modification as the flame undergoes large-scale, stochastic changes. These large-scale changes of flame structure are observed after the flame becomes fully crushed and unstable behavior occurs lasting until the end of the applied voltage pulse. The experimental results of combined OH and acetone PLIF presented in this paper show a significant widening of the reaction zone observed during this unstable behavior. This widening of the reaction zone is indicative of a flame brush normally observed in turbulent flames, demonstrating the ability of the sub-breakdown applied voltage to cause a laminar flame to a transitioning-to-turbulent behavior.  相似文献   

15.
We report on the application of simultaneous single-shot imaging of CH and OH radicals using planar laser-induced fluorescence (PLIF) to investigate partially premixed turbulent jet flames. Various flames have been stabilized on a coaxial jet flame burner consisting of an outer and an inner tube of diameter 22 and 2.2 mm, respectively. From the outer tube a rich methane/air mixture was supplied at a relatively low flow velocity, while a jet of pure air was introduced from the inner one, resulting in a turbulent jet flame on top of a laminar pilot flame. The turbulence intensity was controlled by varying the inner jet flow speed from 0 up to 120 m/s, corresponding to a maximal Reynolds number of the inner jet airflow of 13,200. The CH/OH PLIF imaging clearly revealed the local structure of the studied flames. In the proximity of the burner, a two-layer reaction zone structure was identified where an inner zone characterized by strong CH signals has a typical structure of rich premixed flames. An outer reaction zone characterized by strong OH signals has a typical structure of a diffusion flame that oxidizes the intermediate fuels formed in the inner rich premixed flame. In the moderate-turbulence flow, the CH layers were very thin closed surfaces in the entire flame, whereas the OH layers were much thicker. In the high-intensity-turbulence flame, the CH layer remained thin until it vanished in the upper part of the flame, showing local extinction and reignition behavior of the flame. The single-shot PLIF images have been utilized to determine the flame surface density (FSD). In low and moderate turbulence intensity cases the FSDs determined from CH and OH agreed with each other, while in the highly turbulent case a locally broken CH layer was observed, leading to a significant difference in the FSD results determined via the OH and CH radicals. Furthermore, the means and the standard deviations of CH and OH radicals were obtained to provide statistical information about the flames that may be used for validation of numerical calculations.  相似文献   

16.
A computational study is performed to investigate the effects of hydrogen addition on the fundamental characteristics of propagating spherical methane/air flames at different conditions. The emphasis is placed on the laminar flame speed and Markstein length of methane/hydrogen dual fuel. It is found that the laminar flame speed increases monotonically with hydrogen addition, while the Markstein length changes non-monotonically with hydrogen blending: it first decreases and then increases. Consequently, blending of hydrogen to methane/air and blending methane to hydrogen/air both destabilize the flame. Furthermore, the computed results are compared with measured data available in the literature. Comparison of the computed and measured laminar flame speeds shows good agreement. However, the measured Markstein length is shown to strongly depend on the flame radii range utilized for data processing and have very large uncertainty. It is found that the experimental results cannot correctly show the trend of Markstein length changing with the hydrogen blending level and pressure and hence are not reliable. Therefore, the computed Markstein length, which is accurate, should be used in combustion modeling to include the flame stretch effect on flame speed.  相似文献   

17.
Large discrepancies among the laminar flame speeds and Markstein lengths of methane/air mixtures measured by different researchers using the same constant-pressure spherical flame method are observed. As an effort to reduce these discrepancies, one linear model (LM, the stretched flame speed changes linearly with the stretch rate) and two non-linear models (NM I and NM II, the stretched flame speed changes non-linearly with the stretch rate) for extracting the laminar flame speed and Markstein length from propagating spherical flames are investigated. The accuracy and performance of the LM, NM I, and NM II are found to strongly depend on the Lewis number. It is demonstrated that NM I is the most accurate for mixtures with large Lewis number (positive Markstein length) while NM II is the most accurate for mixtures with small Lewis number (negative Markstein length). Therefore, in order to get accurate laminar flame speed and Markstein length from spherical flame experiments, different non-linear models should be used for different mixtures. The validity of the theoretical results is further demonstrated by numerical and experimental studies. The results of this study can be used directly in spherical flame experiments measuring the laminar flame speed and Markstein length.  相似文献   

18.
A general discussion is given of some fundamental problems of turbulent flame propagation in premixed gases. The following subjects are considered in greater detail: Stability of laminar flames in turbulent flow, shear wave-flame interaction, flame generated turbulence, influence of small scale turbulence on flame propagation and structure of turbulent flames at high Reynolds numbers. The principal object of this study is to describe the basic physical facts which have to be taken into consideration in the modeling of turbulent flames in gases without giving a detailed survey of all the research that has been carried out in the field.  相似文献   

19.
The thermal and kinetic effects of O3 on flame propagation were investigated experimentally and numerically by using C3H8/O2/N2 laminar lifted flames. Ozone produced by a dielectric barrier plasma discharge was isolated and measured quantitatively by using absorption spectroscopy. Significant kinetic enhancement by O3 was observed by comparing flame stabilization locations with and without O3 production. Experiments at atmospheric pressures showed an 8% enhancement in the flame propagation speed for 1260 ppm of O3 addition to the O2/N2 oxidizer. Numerical simulations showed that the O3 decomposition and reaction with H early in the pre-heat zone of the flame produced O and OH, respectively, from which the O reacted rapidly with C3H8 and produced additional OH. The subsequent reaction of OH with the fuel and fuel fragments, such as CH2O, provided chemical heat release at lower temperatures to enhance the flame propagation speed. It was shown that the kinetic effect on flame propagation enhancement by O3 reaching the pre-heat zone of the flame for early oxidation of fuel was much greater than that by the thermal effect from the energy contained within O3. For non-premixed laminar lifted flames, the kinetic enhancement by O3 also induced changes to the hydrodynamics at the flame front which provided additional enhancement of the flame propagation speed. The present results will have a direct impact on the development of detailed plasma-flame kinetic mechanisms and provided a foundation for the study of combustion enhancement by O2(a1Δg) in part II of this investigation.  相似文献   

20.
This paper presents results of experimental investigations on spherical and cylindrical flame propagation in pre-mixed H2/air-mixtures in unconfined and semi-confined geometries. The experiments were performed in a facility consisting of two transparent solid walls with 1 m2 area and four weak side walls made from thin plastic film. The gap size between the solid walls was varied stepwise from thin layer geometry (6 mm) to cube geometry (1 m). A wide range of H2/air-mixtures with volumetric hydrogen concentrations from 10% to 45% H2 was ignited between the transparent solid walls. The propagating flame front and its structure was observed with a large scale high speed shadow system. Results of spherical and cylindrical flame propagation up to a radius of 0.5 m were analyzed. The presented spherical burning velocity model is used to discuss the self-acceleration phenomena in unconfined and unobstructed pre-mixed H2/air flames.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号