共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A community within a graph can be broadly defined as a set of vertices that exhibit high cohesiveness (relatively high number of edges within the set) and low conductance (relatively low number of edges leaving the set). Community detection is a fundamental graph processing analytic that can be applied to several application domains, including social networks. In this context, communities are often overlapping, as a person can be involved in more than one community (e.g., friends, and family); and evolving, since the structure of the network changes. We address the problem of streaming overlapping community detection, where the goal is to maintain communities in the presence of streaming updates. This way, the communities can be updated more efficiently. To this end, we introduce SONIC—a find-and-merge type of community detection algorithm that can efficiently handle streaming updates. SONIC first detects when graph updates yield significant community changes. Upon the detection, it updates the communities via an incremental merge procedure. The SONIC algorithm incorporates two additional techniques to speed-up the incremental merge; min-hashing and inverted indexes. Results show that SONIC can provide high quality overlapping communities, while handling streaming updates several orders of magnitude faster than the alternatives performing from-scratch computation. 相似文献
3.
社区结构的发现是社交网络分析研究的重要内容,与传统的重叠社区不同,最近的研究表明某些真实网络中在社区重叠部分要比社区内部节点间的连接更加密集,而现有的算法没有考虑此类社区结构。基于遗传算法,提出了一个新颖的方法来发现此类社区划分。为了刻画节点属于多个社区的重叠现象,首次将多维染色体和均匀块交叉算子引入到社区发现算法中。通过实验证明,提出的算法可以很好地发现社交网络中重叠和非重叠的社区结构。 相似文献
4.
Identification of overlapping and non-overlapping community structure by fuzzy clustering in complex networks 总被引:1,自引:0,他引:1
This paper proposes a novel method based on fuzzy clustering to detect community structure in complex networks. In contrast to previous studies, our method does not focus on a graph model, but rather on a fuzzy relation model, which uses the operations of fuzzy relation to replace a traversal search of the graph for identifying community structure. In our method, we first use a fuzzy relation to describe the relation between vertices as well as the similarity in network topology to determine the membership grade of the relation. Then, we transform this fuzzy relation into a fuzzy equivalence relation. Finally, we map the non-overlapping communities as equivalence classes that satisfy a certain equivalence relation. Because most real-world networks are made of overlapping communities (e.g., in social networks, people may belong to multiple communities), we can consider the equivalence classes above as the skeletons of overlapping communities and extend our method by adding vertices to the skeletons to identify overlapping communities. We evaluated our method on artificial networks with built-in communities and real-world networks with known and unknown communities. The experimental results show that our method works well for detecting these communities and gives a new understanding of network division and community formation. 相似文献
5.
Gupta Sumit Kumar Singh Dhirendra Pratap Choudhary Jaytrilok 《Knowledge and Information Systems》2022,64(8):2023-2058
Knowledge and Information Systems - Detection of communities is one of the prominent characteristics of vast and complex networks like social networks, collaborative networks, and web graphs. In... 相似文献
6.
社区发现算法是发现社区内部结构和组织原则的基本工具。现有的基于模型的算法和基于优化的算法通常考虑2种信息源,即网络结构和节点属性,以获得具有更密集的网络结构和相似属性信息的社区。然而此类算法在聚类过程中无法自动确定结构与属性之间的相对重要性,以揭示子空间,因此检测到的社区质量还需提升。将子空间集成到一个重叠社区发现框架中,设计了自适应结构和属性权重策略,有效地揭示子空间,从而发现多样性的社区。在人工和真实网络上进行了广泛的实验,进一步分析验证了揭示子空间对于捕获更好的社区的重要性,说明了本文算法的合理性和有效性。 相似文献
7.
8.
《Pattern recognition letters》2001,22(6-7):691-700
In this paper, a two-phase clustering algorithm for outliers detection is proposed. We first modify the traditional k-means algorithm in Phase 1 by using a heuristic “if one new input pattern is far enough away from all clusters' centers, then assign it as a new cluster center”. It results that the data points in the same cluster may be most likely all outliers or all non-outliers. And then we construct a minimum spanning tree (MST) in Phase 2 and remove the longest edge. The small clusters, the tree with less number of nodes, are selected and regarded as outlier. The experimental results show that our process works well. 相似文献
9.
The Journal of Supercomputing - Recommender systems play an important role in dealing with the problems caused by the great and growing amount of information, and the collaborative filtering method... 相似文献
10.
研究表明,很多真实网络具有层次结构和重叠结构。传统的层次聚类算法通常以节点为对象进行扩展形成层次树图从而得到网络的层次结构。这种做法存在两个问题,其一是算法的稳定性,主要体现在初始节点的选择上,少数情况下,初始节点的不同会导致算法最终结果的不同,即使算法的结果不依赖于初始节点,但算法的复杂度会随之变化;其二是不能发现网络中的重叠结构。针对以上问题,提出一种基于最大团的层次化重叠社区发现算法。该算法以最大团为扩展对象,然后利用最大团扩展策略生成层次树图,最后采用重叠模块度函数对层次树图进行剪枝得到社区划分结果。在真实网络以及LFR人工网络上的实验结果表明该算法能够有效地挖掘网络中的层次结构和重叠结构。 相似文献
11.
周军 《网络安全技术与应用》2014,(9):23-25
社团发现作为网络科学中一个重要的基础问题受到了广泛的关注和重视.针对社团结构的研究为我们提供了从中尺度上分析和理解网络的途径,具有重要的理论和实际意义.已有的研究大多关注无向图和非重叠社团的发现.本文基于标签传递和用户排序的思想设计了一个有向图上的重叠社团发现算法,实际数据上的实验表明了算法在发现用户多重社团属性和确定社团规模方面的有效性. 相似文献
12.
Multimedia Tools and Applications - Performance improvement of community detection is an NP problem in large social networks analysis where by integrating the overlapped communities’... 相似文献
13.
社团结构是复杂网络的一项基本特性,对复杂网络中社团结构特别是重叠社团结构的检测,是复杂网络理论研究的一项重要且充满挑战的课题.对当前常用的重叠社团检测算法进行了分析和归纳,阐述每类算法特点,并介绍用于评价算法性能的一些基准图,对复杂网络重叠社团检测领域未来的研究方向提出了一些思考和建议. 相似文献
14.
15.
生物信息学、社会网络、Web分析等方面的发展积累了大量的复杂网络数据信息,在对这些复杂网络进行社群检测时,往往会将一些节点归类于多个社群,目前已经提出了一些处理此类问题的算法(如LFK、GCE等),然而这类算法对局部扩充函数中参数α的选取过程复杂,无法一次性获取最优α,直接影响到了算法的可应用性.针对该缺点,提出了一种基于局部扩展的重叠社群检测的改进算法.该算法通过将α参数考虑进社群的成长过程中,使算法在保持原有速度与精度的情况下自适应地选取最优α. 相似文献
16.
谱社区检测算法多基于结构对网络进行划分,往往受限于划分数量且难以控制重叠程度。设计了面向属性网络的谱社区检测算法,可将属性网络划分为任意数量的可重叠社区并有效发现离群点。具体地,首先,从结构和属性两方面综合考虑,基于加权模块度设计了最大化到节点向量化的分区映射方法;其次,给出簇中心向量的初始选择策略,并将其融合在面向属性网络的重叠度和离群度制约中,实现重叠社区的发现;再次,设计节点分配策略,计算节点与簇中心向量的内积,将节点分配给具有最高内积的社区;最后,结合节点隶属情况,高效地在属性网络中检测出结构紧密、可重叠和具有离群点的社区。此外,将本文算法应用于现实世界的多个网络,验证了本文算法的有效性和效率。 相似文献
17.
社区划分一直是复杂网络研究中的一个热门话题,社区的快速准确划分为研究复杂网络的性质提供了良好的基础。传统的社区发现方法都是在全局复杂网络的基础上进行社区划分,随着网络中节点的增加,网络规模的变大,社区发现变得更为复杂。提出了一种局部社区发现算法,该算法无需知道整个复杂网络的全部信息,只需从一个待求节点出发,考察其与邻接节点的紧密程度,逐步将邻接点添加到社区中,得到该节点所在的社区结构。同时,该算法还可实现全局网络的社区发现。利用该算法分别对Zachary空手道俱乐部网络和海豚社会网络进行社区发现,实验结果表明了该算法的准确性与可行性。 相似文献
18.
挖掘复杂网络的重叠社区结构对研究复杂系统具有重要的理论和实践意义。提出一种基于局部扩展优化的重叠社区识别算法。
首先基于网络节点的聚集系数筛选种子节点,选取不相关的、局部聚集系数大的种子作为初始社区;然后采用贪心策略扩展初始社区,得到局部连接紧密的自然社区;最后检测并合并相似的社区,获得高覆盖率的重叠社区结构。在人工生成网络和真实网络数据集上的实验结果表明,与现有的基于局部扩展的代表性重叠社区发现算法相比,所提算法能在稀疏程度不同的网络上发现更高质量的重叠社区。 相似文献
19.
针对多标签传播重叠社区发现算法COPRA存在的的随机性强、鲁棒性差等问题,提出一种基于多标签传播思想的重叠社区发现算法。该算法通过LeaderRank算法来量化网络中节点的重要性,再根据量化值大小对节点进行团扩展,得到可重叠的最具重要性的粗糙团,分别对粗糙团和非粗糙团中的节点进行标签初始化,再通过合理的标签迭代顺序和改进的标签删选策略进行标签更新,直到达到标签传播的终止条件结束迭代过程。在人工网络图和真实数据集上进行实验,结果表明所提算法不仅有效地增强了社区发现结果的稳定性,同时提高了准确率。 相似文献
20.
社团是社会网络的一个重要特征,社团发现是近年来研究的热点问题之一。通过在复杂网络上传递信号,获得各节点对网络的影响向量,从而把网络中节点的拓扑性质转化为代数空间上向量的几何关系,然后用结合模块度的层次聚类挖掘社会网络中的社团结构。该算法优点是不需要预先知道社团的数量或社团内节点的数量,用Zachary空手道俱乐部网络、大学足球赛网络以及海豚关系网络的数据进行验证,该算法划分的社团准确性超过了Newman的结论。 相似文献