首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, v-bending of Ti-6Al-4V alloy sheet was conducted from room temperature to 850 °C at a fixed velocity of 0.1 mm/s. Punches with punch radii of 1, 2, 4, and 6 mm, as well as several holding times were used. V-bending and springback behaviors were numerically analyzed with an isotropic hardening model that considered rate-dependent effects. Using a punch radius of 1 mm always leads to negative springback in the temperature range of 550–750 °C. This behavior occurs because an arc formed in the transition side near the end of bending and flattened at the end of bending, leading to an internal bending moment which causes specimen to bow inward after unloading. At a punch radius of 2 mm, positive springback occurs at 300–650 °C, while negative springback occurs at 700–750 °C. At punch radii of 4 and 6 mm, positive springback occurs at 600–750 °C, and the angle decreases as temperature increases. At 850 °C, negative springback occurs at a punch radius of 4 mm due to the decrease in yield strength. At a punch radius of 1 mm, cracking occurs at room temperature and 500 °C, while at 2 mm, it occurs only at room temperature. This discrepancy is ascribed to the greater plastic deformation caused by the smaller punch. As holding time increases, the shape of the deformed specimen more closely matches the desired shape.  相似文献   

2.
Ti-6Al-4V titanium alloy is one of the most important materials in industry, 80% of which is used in aerospace industry. Titanium alloys are also notoriously difficult-to-machine materials owing to their unique material properties imposing a major bottleneck in manufacturing systems. Cryogenic cooling has been acknowledged as an alternative technique in machining to improve the machinability of different materials. Although milling is considered to be the major machining operation for the manufacture of titanium components in aerospace industries, studies in cryogenic machining of titanium alloys are predominantly concentrated on turning operations. To address this gap, this article provides an investigation on the viability of cryogenic cooling in CNC end-milling of aerospace-grade Ti-6Al-4V alloy using liquid nitrogen in comparison with traditional machining environments. A series of machining experiments were conducted and surface roughness, tool life, power consumption, and specific machining energy were investigated for cryogenic milling as opposed to conventional dry and flood cooling. Analysis revealed that cryogenic machining using liquid nitrogen has the potential to significantly improve the machinability of Ti-6Al-4V alloy in CNC end-milling using solid carbide cutting tools and result in a paradigm shift in machining of titanium products. The analysis demonstrated that cryogenic cooling has resulted in almost three times increased tool life and the surface roughness was reduced by 40% in comparison with flood cooling.  相似文献   

3.
Superplastic forming of titanium alloys is used for producing structural components, since it is an effective way to manufacture complex-shaped parts in a one-step operation. An optimized sheet-forming process has been designed incorporating a non-isothermal heating system to establish a fast forming process. This work sought to expand the advantages of the technology to the forming of Ti-6Al-4V alloy at 800 °C and shorter cycle time. The minimum thicknesses area was found at the outward corners, showing a maximum percent thinning of 54 %. In addition to stress variations, the cracks resulting from hot drawing and the oxidation on the sheet surface are the other reasons leading to thickness reduction. From the oxidization behavior of Ti-6Al-4V alloy, it was revealed that the decrease in forming temperature from 900 to 800 °C significantly reduced the formation rate of oxide film on the sheet surface. The study also showed that the main microstructure evolution of Ti-6Al-4V alloy under these conditions was recrystallization.  相似文献   

4.
Micro-end milling is one of the promising methods for rapid fabrication of features with 3D complex shapes. However, controlling the micro-end milling process to obtain the desired results is much harder compared to that of macro-end milling due to the size effect and uncontrollable factors. The problem is much pronounced when workpiece material is a difficult-to-process material such as titanium-based alloys which are widely used as material of choice for aircraft structures, turbine blades, and medical implants. In order to find the optimal process parameters which minimize the surface roughness and burr formation, experiments were conducted and models obtained with statistically based methods utilized in multi-objective particle swarm optimization to identify optimum process parameters. The results show that the average surface roughness can be minimized while burr formation is reduced concurrently.  相似文献   

5.
6.
无涂层硬质合金刀具车削钛合金Ti-6Al-4V实验研究   总被引:1,自引:0,他引:1  
钛合金是航空航天工业中应用广泛的一种难加工材料。本文研究了无涂层硬质合金刀具干切削钛合金Ti-6Al-4V时切削力、表面粗糙度的变化规律,得到了切削深度、进给量、切削速度对切削力和表面粗糙度的影响规律。对切削力实验结果进行了回归分析得到了切削力的指数公式,并运用校正R^2拟合判定系数、累积概率图和残差图对回归模型进行了检验,检验结果表明:切削力的3个回归方程较好的拟合了实验所测的数据,钛合金切削过程中切削力近似满足指数关系。  相似文献   

7.
Titanium Ti-6Al-4V alloy is a typical difficult-to-machine material due to its unique physical and mechanical properties. The material properties of Ti-6Al-4V play an important role in process design and optimization. However, the dynamic mechanical behavior is poorly understood and accurate predictive models have yet to be developed. This work focuses on the dynamic mechanical behavior of machining Ti-6Al-4V beyond the range of strains, strain rates, and temperatures in conventional materials testing. The flow stress characteristics of strain hardening and thermal softening can be predicted by the Johnson–Cook model coupled with the adiabatic condition. The predicted flow stresses at small strains agree very well with those from the split Hopkinson pressure bar (SHPB) tests, while the predicted flow stresses at large strains also agree with the calculated flow stresses based on the cutting tests with a suitable depth of cut. Heat fraction and temperature parameter control the range of thermal softening and the decrease rate of flow stress. The material may exhibit super plasticity at a small depth of cut with a large radius of the cutting edge in micromachining. Strain rate is one important factor for material fracture close to the cutting edge. The failure strain increases linearly with the increase of homologous temperature, while it only increases slightly with the strain rate.  相似文献   

8.
In order to improve energy efficiency, a driver plate made from high-conductivity material is normally used in the electromagnetic forming process of high-strength but low-conductivity sheet metal. The choice of driver plate significantly influences final deformation of the workpiece. In this paper, the electromagnetic free bulging process of Ti-6Al-4V titanium alloy sheet, widely used in aerospace, was studied by both experimental means and numerical simulation. The forming efficiency and quality of the workpiece under different types of driver plates were investigated in detail. The results show that by using high-conductivity and easily deformed materials such as aluminum alloy, with a skin depth in thickness, high efficiency and uniform deformation can be achieved. The results of this study can provide guidance on the choice of process parameters such as the material and thickness of a driver plate.  相似文献   

9.
Abstract

In drilling in titanium alloys, heat trapped in a hole adversely affects tool life, hole surface quality and integrity. Therefore, modeling temperature distribution in drilling is vital for effective heat dissipation and improving quality of drilled surfaces. The existing numerical and finite element models consider only frictional heat, whereas the effect of shear heat generation and tertiary heat generation is neglected. In the present work, a comprehensive thermal model of the drilling process is developed by considering all heat generated in shear, friction and tertiary zones. The drill cutting edges are divided into a series of independent elementary cutting tools (ECT). The calculated heat flux loads are applied on an individual ECT in the finite element model to determine the temperature distribution and the maximum temperature around the cutting edge. The temperature in the drill was also measured experimentally with the help of an Infrared (IR) camera. The results of numerical simulations lie within the error of ~8.75% when compared to the prior studies, and ~5.41% when compared to our experimental work. The thermal model gives the temperature distribution, and the maximum temperature observed at the corner of cutting edge was 604.2°C at a cutting speed of 35?m/min.  相似文献   

10.
11.
D.M. Turley 《Wear》1985,104(4):323-335
Under conventional grinding conditions redeposition which degrades surface finish occurs when grinding titanium and a titanium alloy (Ti-6Al-4V). To prevent redeposition and hence to obtain optimum surface finish the following grinding conditions are required: a soft grade (H) silicon carbide wheel running at 10 m s?1, a sulphur-chlorinated cutting oil grinding fluid and a relatively high table speed (0.2 m s?1), and the wheel should be re-dressed prior to taking the finishing passes (about ten) at a wheel downfeed of 2.5 μm.  相似文献   

12.
13.
Because the intermediate-stage forming surface and the intermediate-stage forming tool path of the complex shape model are difficult to generate, the existing multi-stage CNC incremental forming takes the regular rotary body model or the square model as the research objects, and all adopt the three-axis CNC incremental forming mode. In this paper, a method for generating the intermediate-stage surface by using a longitude line that can reflect the personality of the surface and the five-axis CNC multi-stage incremental forming tool path was proposed. Firstly, the vertexes of the triangular facets of the STL model are used to generate the longitude lines which can reflect the characteristic of the surface, then the longitude lines are offset according to the multi-stage forming strategy and the characteristics of each surface associated with the longitude lines so that the intermediate-stage longitude lines could be generated, and then the intermediate-stage surfaces are built using the intermediate-stage longitude lines. Finally, the cutter location points of each intermediate stage are obtained by cutting the intermediate-stage surfaces, and the postures of the five-axis CNC pressing tool are determined according to the normal vector of the cutter location points. The case studies show that the proposed method can well generate the five-axis CNC multi-stage incremental forming path for the complex shape sheet metal part. The results of the numerical simulation analysis and forming experiments show that the proposed method is applicable.  相似文献   

14.
15.
In microelectrodischarge machining (micro-EDM), dielectric plays an important role during machining operation. The machining characteristics are greatly influenced by the nature of dielectric used during micro-EDM machining. Present paper addresses the issues of micro-EDM utilizing different types of dielectrics such as kerosene, deionized water, boron carbide (B4C) powder suspended kerosene, and deionized water to explore the influence of these dielectrics on the performance criteria such as material removal rate (MRR), tool wear rate (TWR), overcut, diameteral variance at entry and exit hole and surface integrity during machining of titanium alloy (Ti-6Al-4V). The experimental results revealed that MRR and TWR are higher using deionized water than kerosene. Also, when suspended particles, i.e., boron carbide-mixed dielectrics are used, MRR is found to increase with deionized water, but TWR decreases with kerosene dielectric. Further analysis is carried out with the help of scanning electron microscope (SEM) micrographs, and it is found that the thickness of white layer is less on machined surface when deionized water is used as compared to kerosene. Also, a comparative study of machining time has been carried out for the four types of dielectrics at different machining parametric settings. Furthermore, the investigation on the machined surface integrity and wear on microtool tip have also been done in each type of the dielectrics with the help of SEM micrographs and optical photographs. Hence micro-EDM machining on Ti-6Al-4V work material with B4C-mixed dielectrics is performed in the investigation and reported the performance criteria of the process. It can be concluded from the research investigation that there is a great influence of mixing of boron carbide additive in deionized water dielectrics for enhancing machining performance characteristics in micro-EDM during microhole generation on Ti-6Al-4V alloy.  相似文献   

16.
Electric hot incremental forming of Ti-6Al-4V titanium sheet   总被引:2,自引:2,他引:0  
Electric hot incremental forming of metal sheet is a new technique that is feasible and easy to control to form hard-to-form sheet metals. In the present study, Ti-6Al-4V titanium sheet was studied because it was wildly used in the aeronautics and astronautics industries. Although Ti-6Al-4V titanium can be well-formed in high temperature, the surface quality is a problem. In order to enhance the surface quality, it is very important to select the proper lubricant. At the same time, because Ti-6Al-4V titanium has a lively chemical property, it is very important to choose a processing temperature range in order to acquire excellent plastic property and to prevent oxidation. Various lubricants were selected in processing to compare the effect, and some workpieces were formed at different temperatures to find the best forming temperature. The results show that using the lubricant film of nickel matrix with MoS2 self-lubricating material, Ti-6Al-4V titanium workpiece was formed with high surface quality, and the optimum thickness of composite coating is 20 μm for Ti-6Al-4V titanium sheet of 1.0-mm thickness. In fact, the lubricant film also does help to prevent oxidation of Ti-6Al-4V titanium sheet. The appropriate temperature range of Ti-6Al-4V forming with slightly oxidized is 500–600°C in processing, and the maximum draw angle formed in this range was 72°.  相似文献   

17.
18.
An experimental investigation of chip morphologies in high-speed dry milling of Ti-6Al-4V alloy was conducted over a variety of different cutting conditions. Observation on the multi-view characterization of the chips was carried out which includes free surface, back surface, and cross-section of top surface. Structure and shape alterations of the free and back surfaces were analyzed using an optical microscope and a scanning electron microscope (SEM). The microstructural analysis indicated that the chip morphology when dry milling Ti-6Al-4V alloy in high-speed range exhibited a serrated shape for a wide range of cutting conditions. The degree of chip serration is more pronounced and evident with the increase in cutting speed, feed, and depth of cut. A significant variation in the microstructure of the chip including the thickness of the shear bands and the serrated tooth structure for different cutting speeds has been identified. The higher chip serration ratio (CSR) in high cutting speed range may facilitate appropriate machining condition for the occurrence of well-broken chips. Moreover, chip formation takes place by the mechanism of catastrophic thermoplastic shear from the observation of the shear bands using metallurgical analysis techniques. X-ray diffraction results indicated that no evidence of phase transformation was found in the shear localized chips. The variation in chip serration and metallurgical microstructure inside the shear bands and the tool/chip contact zone should be attributed to the reinforcement of coupled thermo-mechanical behavior in the cutting process with the increase in machining parameters.  相似文献   

19.
A finite element modelling was carried out to analyse the chip morphology and adiabatic shear banding localisation processes when high-speed machining refractory titanium alloys. A thermo-visco-plastic model for the machined material and a rigid with thermal behaviour for the cutting tool were assumed. The study tries to understand the effect of the material behaviour on the produced chip morphology. One of the main characteristics of titanium chips is a segmented shape for a wide range of cutting conditions. This kind of morphology was found only dependent on adiabatic shear banding without material damage effect in the shear zones (primary and secondary shear zones). The influence of the material characteristics (strain softening, thermal softening, etc.) and machining parameters on the cutting forces and chip morphology were analysed. Three flow-stress laws and different friction coefficients (low and high friction) at the tool-chip interface was particularly analysed to explain the different morphologies obtained for refractory titanium chips.  相似文献   

20.
Journal of Mechanical Science and Technology - We compared the corrosion resistance behavior of Ti-6Al-4V and Ti-6Al-7Nb alloy in micro-milling operation. The influence of parameters such as...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号