首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructural characteristics, mechanical properties and creep resistance of Mg–(8%–12%)Zn–(2%–6%)Al alloys were investigated to get a better overall understanding of these series alloys. The results indicate that the microstructure of the alloys ZA82, ZA102 and ZA122 with the mass ratio of Zn to Al of 4–6 is mainly composed of α-Mg matrix and two different morphologies of precipitates (block τ-Mg32(Al, Zn)49 and dense lamellar ε-Mg51Zn20), the alloys ZA84, ZA104 and ZA124 with the mass ratio of 2–3 contain α-Mg matrix and only block τ phases, and the alloys ZA86, ZA106 and ZA126 with the mass ratio of 1–2 consist of α-Mg matrix, block τ precipitates, lamellar ?-Al2Mg5Zn2 eutectics and flocculent β-Mg17Al12 compounds. The alloys studied with the mass ratio of Zn to Al of 2–3 exhibit high creep resistance, and the alloy ZA124 with the continuous network of τ precipitating along grain boundaries shows the highest creep resistance.  相似文献   

2.

Effects of ageing treatment on the microstructures, mechanical properties and corrosion behavior of the Mg-4.2Zn-1.7RE-0.8Zr-xCa-ySr [x=0, 0.2 (wt.%), y=0, 0.1, 0.2, 0.4 (wt.%)] alloys were investigated. Results showed that Ca or/and Sr additions promoted the precipitation hardening behavior of Mg-4.2Zn-1.7RE-0.8Zr alloy and shortened the time to reaching peak hardness from 13 h to 12 h. The maximum hardness of 77.1±0.6 HV for the peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy was obtained. The microstructures of peak-aged alloys mainly consist of α-Mg phase, Mg51Zn20 phase and ternary T-phase. The Zn-Zr phase is formed within the α-Mg matrix, and the Mg2Ca phase is formed near T-phase due to the enrichment of Ca in front of the solid-liquid interface. Furthermore, fine short rod-shaped β′1 phase is precipitated within the α-Mg matrix in the peak-aged condition. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy exhibits optimal mechanical properties with an ultimate tensile strength of 208 MPa, yield strength of 150 MPa and elongation of 3.5%, which is mainly attributed to precipitation strengthening. In addition, corrosion properties of experimental alloys in the 3.5wt.% NaCl solution were studied by the electrochemical tests, weight loss, hydrogen evolution measurement and corrosion morphology observation. The results suggest that peak-aged alloys show reduced corrosion rates compared with the as-cast alloys, and minor additions of Ca and/or Sr improve the corrosion resistance of the Mg-4.2Zn-1.7RE-0.8Zr alloy. The peak-aged Mg-4.2Zn-1.7RE-0.8Zr-0.2Ca-0.2Sr alloy possesses the best corrosion resistance, which is mainly due to the continuous and compact barrier wall constructed by the homogeneous and continuous second phases.

  相似文献   

3.
Abstract

In this study, the microstructure and mechanical properties of as cast Mg–x Sn–5Al–1Zn alloys were investigated. The microstructures of the alloys were characterised by the presence of Mg2Sn and Mg17Al12 precipitates. The greatest tensile strength and elongation were obtained at the alloy containing 5 wt-%Sn at room temperature. Microhardness of the alloys and volume fraction of the Mg2Sn precipitates increased with increasing Sn content. Fractographic analysis demonstrated that dimple and cleavage facet were dominant mechanisms of these alloys tested at room and elevated temperature. The portion of cleavage facet was increased with the increment of Sn at the room and elevated temperatures.  相似文献   

4.
Effects of 1.5 wt.% Ag addition and solid solution?+?artificial ageing at 160 °C on the microstructure and mechanical properties of a Mg-5Sn alloy have been studied. The results show that Ag addition has significantly hardened the solution-treated Mg-5Sn alloy. During the ageing process, the hardness increase rate and the strength and ductility of the Mg-5Sn alloy at each state are also improved by Ag addition. The improved strengthening behavior is primarily attributed to the refinement distribution of the Mg2Sn precipitates, the enhanced precipitation process, and the synergistic strengthening effect of Mg2Sn and a metastable plate DO19 phase formed at lower ageing temperature. For each solution-treated alloy, the strength and ductility are higher than the corresponding cast ones. Ageing further enhances the yield strength, and the ductility of the Mg-5Sn-1.5Ag alloy is also increased after ageing. The fracture surfaces of the both peak-aged alloys exhibit the characteristic of a mixture of quasi-cleavage and ductile fracture.  相似文献   

5.
通过扫描电镜、X射线衍射、差热分析以及抗拉和蠕变性能测试等手段,调查和比较了Ce、Y和Gd对Mg-3Sn-2Sr镁合金铸态组织和力学性能的影响。结果表明:Mg-3Sn-2Sr三元合金主要由?-Mg、初生和共晶SrMgSn以及Mg2Sn相组成。当添加1.0%Ce、1.0%Y和1.0%Gd到Mg-3Sn-2Sr合金后,合金中分别形成了Mg12Ce、YMgSn、GdMgSn和/或Mg17Sr2相。同时,合金中初生SrMgSn相的形成被抑制,且呈针状的粗大初生SrMgSn相也被变质和细化。此外,添加1.0%Ce、1.0%Y和1.0%Gd均能同时改善Mg-3Sn-2Sr合金的抗拉性能和蠕变性能。在含Ce、Y和Gd合金中,含Ce合金的抗拉性能相对较含Y和含Gd合金的高。  相似文献   

6.
7.
The effect of Mg, Si and Cu content on the microstructural development during ageing treatment of dilute 6000 series alloys have been investigated using transmission electron microscopy (TEM). Four dilute alloys were used in this study. These alloys were subjected to quenching and artificial ageing at 100 °C, 185 °C and 300 °C. The microstructural developments of the precipitates formed were monitored by TEM. The ageing temperature of 100 °C was found to be too low to form precipitates. It was found that needle or rod-shaped precipitates were formed in the alloys after ageing at 185 and 300 °C. Prolong ageing up to 1000 h at 300 °C resulted in the formation of Mg2Si precipitate that coexists with the type of AlFeSi and Si precipitates. The results show a correlation between the Mg2Si, Si and Cu content on the microstructure of the four dilute alloys after ageing treatment.  相似文献   

8.
In this article, Mg–Cu–Y alloys with two different Mg/Cu ratios(in at%) were prepared using a watercooled copper mold. Scanning electron microscopy and X-ray diffraction were applied to analyze the microstructure and phase composition. Moreover, corrosion resistance and wear resistance were studied systematically. The results show that both Mg65 Cu25 Y10 and Mg60 Cu30 Y10 alloys could form a composition of crystalline and amorphous phases. Although the microstructure of Mg65 Cu25 Y10 consists of an amorphous phase and a-Mg, Mg2 Cu, and Cu2 Y crystalline phases, the microstructure of Mg60 Cu30 Y10 alloy mainly consists of the amorphous phase and a-Mg, Mg2 Cu. With reducing Mg/Cu ratio, the alloys have better corrosion resistance and wear resistance. The mechanism has also been discussed in detail.  相似文献   

9.
The effects of Sn addition on the microstructure of as-cast and as-extruded Mg–9Li alloys were investigated. The results show that α-Mg, β-Li, Li2MgSn, and Mg2Sn are primary phases in the microstructures of the as-cast and as-extruded Mg–9Li–xSn (x=0, 5; in mass fraction, %) alloys. Li2MgSn phase evolves from continuously net-like structure in the as-cast state to fine granular in the as-extruded state. After the extrusion, Mg–9Li–5Sn alloy has finer microstructures. Li2MgSn or Mg2Sn compound can act as the heterogeneous nucleation sites for dynamic recrystallization during the extrusion due to the crystallography matching relationship. Extrusion deformation leads to dynamic recrystallization, which results in the grain refinement and uniform distribution. The as-extruded Mg–9Li–5Sn alloy possesses the lowest grain size of 45.9 μm.  相似文献   

10.
Effects of aging temperature and time on the aging behavior in AZ91 alloy and Sn containing AZ91 alloy (AZT915) have been investigated in the present study. The mode of precipitation, i.e. discontinuous and continuous precipitation in both alloys is strongly affected by the aging temperature. At low aging temperature of 403 K, only discontinuous precipitation occurs at the grain boundaries, whereas at high aging temperatures of 573 and 623 K only continuous precipitation occurs inside the grains. At intermediate temperature range (443 or 498 K) both discontinuous and continuous precipitation reactions occur. In AZT915, the Mg2Sn particles at the grain boundary effectively reduce the available nucleation sites for discontinuous β precipitates, and slow down the movement of the grain boundary, resulting in suppression of discontinuous precipitation. In addition, increased local lattice strain by the presence of Sn in the α-Mg solid solution matrix accelerates the nucleation of the continuous precipitates at the early stage of aging treatment. Therefore, significantly higher peak hardness can be obtained within a shorter aging time in AZT915.  相似文献   

11.
The precipitation behavior of Mg17Al12 in monolithic and Al2O3 short fiber reinforced Mg-Al-Zn alloys was investigated by optical and transmission electron microscopies and hardness measurements. The maximum hardness was obtained when the long and short axes of the platelet type continuous Mg17Al12 precipitates were about 0.3 μm and 0.04 μm, respectively. The area fraction of the discontinuous Mg17Al12 precipitate nodule reached about 0.23. The coarsening behavior of the discontinuous Mg17Al12 precipitate nodule was found to obey the relationship suggested by the Johnson-Mehl-Avrami model. The slope of the Johnson-Mehl-Avrami plot for the Al2O3 short fiber reinforced Mg-Al-Zn alloy was four times larger than that for the monolithic alloy due to the increased number of nucleation sites, i.e. nucleation at the interface between the reinforcing material and the α-Mg matrix as well as at the α-Mg grain boundaries.  相似文献   

12.
Microstructural changes with varying amounts of Ca in cast AZ31-xCa (x: 0.7 wt.%, 2.0 wt.%, 5.0 wt.%) alloys were investigated. According to transmission electron microscopy (TEM) analyses, it was experimentally confirmed that the C36-(Mg,Al)2Ca phase with a di-hexagonal structure formed at interdendritic regions in as-cast AZ31 alloys with no more than 2 wt.% Ca. On the other hand, as the Ca content exceeded 2 wt.%, the lamellar structure consisting of the α-Mg phase and the Mg2Ca phase with a C14 structure formed at interdendritic regions instead of C36 phase. Plate-like Al2Ca precipitates with a C15 structure also formed on the basal plane inside the α-Mg grains.  相似文献   

13.
The AZ91 alloy is composed of Mg17(Al, Zn)12 precipitates, an eutectic phase around these precipitates, AlMn intermetallic particles and an α-Mg solid solution (matrix). The corrosion behaviour of AZ91 was investigated at the microscale by means of the electrochemical microcell technique, which uses extremely small capillaries (diameters between 5 and 10 μm). Experiments were conducted in 0.1 M NaClO4 at 25 °C. The β-Mg17(Al, Zn)12 precipitates were found to have the highest corrosion resistance, whereas the eutectic phase was very active (pitting potential of approximately −1400 mV vs. Ag/AgCl). The α-Mg solid solution displayed better corrosion resistance than the eutectic phase.  相似文献   

14.
1 Introduction Magnesium alloy exhibits light mass, high specific strength and stiffness. Therefore, extensive application of magnesium alloys to various automobile parts is expected to enhance fuel efficiency through mass reduction. However, the unsatisf…  相似文献   

15.
To improve the hydrogen storage properties, the composition and microstructure of Mg-Sn alloys were modified through fabricating Mg/Mg2Sn nanocomposite by mechanical alloying. The microstructures were characterized by X-ray diffraction and scanning electron microscopy. It is found that Mg2Sn instead of Mg(Sn) solid solution is preferably formed during milling process. Although Mg2Sn is not a hydriding phase, the in situ formed nanosized Mg2Sn facilitates hydrogen absorption/desorption of Mg by forming Mg/Mg2Sn nanocomposite. The mechanically milled Mg-5 at.% Sn nanocomposite exhibits slightly elevated plateau pressure and destabilized thermodynamics due to the introduction of large amount of interface energy in Mg/Mg2Sn nanocomposite.  相似文献   

16.
在氩气保护气氛下熔炼,得到Mg-5Li-xSn(x=0.15,0.25和0.65,质量分数)系列合金。通过光学显微镜、扫描电镜、X射线衍射仪和能谱仪分析合金的显微组织。结果表明,Mg-5Li合金中添加的Sn元素可以起到明显的晶粒细化作用,当Sn含量从0.15%增加到0.65%时,铸态合金的平均晶粒尺寸从556μm细化到345μm,相应的挤压态合金的晶粒从33μm减小到23μm。近似网状的第二相Mg2Sn分布在铸态合金的晶界上,挤压之后,颗粒状的Mg2Sn主要分布在晶粒内部。这些金属间化合物在挤压动态再结晶中可以作为有效的形核质点,从而起到细化晶粒的作用。  相似文献   

17.
The microstructure and mechanical properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) (WGZ1152) alloy during different heat treatments were investigated. Almost all the Mg24(GdYZn)5 eutectic phases dissolved into the α-Mg matrix after solution treatment at 535 °C for 20 h. After ageing at 225 °C for 24 h (T6 state), a great amount of fine β′ precipitates formed. Both the 18R-type long period stacking ordered (LPSO) Mg12YZn phase and 6H′-type LPSO phase exhibit good thermal stability during the high-temperature heat treatments process. The 18R-type LPSO Mg12YZn phases are much harder than α-Mg matrix and have a volume fraction of ∼16%. The ultimate tensile strength at the room temperature of the peak-aged alloy (T6 state) is 307 ± 6 MPa and elongation is 1.4 ± 0.3%. The alloy in T6 state shows anomalous positive temperature dependence of the strength from room temperature to 250 °C, and maintains a strength of more than 260 MPa up to 300 °C (0.64Tm). The excellent strength of the WGZ1152 alloy at both room and elevated temperatures is mainly attributed to the solid solution strengthening, β′ precipitates strengthening and LPSO strengthening. Slip line observations suggest a transition from basal to non-basal slip with increasing temperature.  相似文献   

18.
For enhancement of mechanical properties in Mg-9Li-3Al alloys, Mg-9Li-3Al duplex alloys were alloyed by addition of Sn and Y. Microstructure evolution and mechanical property response of as-cast Mg-9Li-3Al alloys by alloying with Sn and Y were investigated by optical microscopy, scanning electron microscopy, X-ray diffractometry and tensile tests. The results indicate that considerable blocky dendrites of primary α phase in Mg-9Li-3Al alloys become lath-like due to the addition of Sn. With addition of Y, Mg-9Li-3Al alloy consists of both block-like and lath-like α-Mg dendrites. The as-cast Mg-9Li-3Al-1Sn-1Y alloy shows a yield strength of 118 MPa, ultimate tensile strength of 148 MPa and the elongation to failure of 21%. Improvement in both strength and elongation of Mg-9Li-3Al alloys with Sn and Y addition is attributed to the combined action of MgLi2Sn and Al2Y intermetallic compounds.  相似文献   

19.
制备了Mg-6Al-1.0Ca-0.5Mn-x Sm(x=0.5,1.5,4.5,质量分数,%)合金,研究了合金的显微组织和力学性能。实验结果表明,随着Sm质量分数的增加,Al_2Sm相主要在晶内析出且体积分数增加,相反Mg_(17)Al_(12)相的体积分数降低;挤压后合金发生动态再结晶,晶粒细化。在室温条件下,含1.5%Sm合金显示了最佳的力学性能,其极限抗拉强度、屈服强度和伸长率分别为316 MPa,148 MPa和21.3%。该合金优异的力学性能主要是由于晶粒细化、Al_2Sm颗粒的弥散强化和减少Mg_(17)Al_(12)相的析出。  相似文献   

20.
The microstructure and properties of the as-cast, as-homogenized and as-extruded Mg−6Zn−4Sn−1Mn (ZTM641) alloy with various Al contents (0, 0.5, 1, 2, 3 and 4 wt.%) were investigated by OM, XRD, DSC, SEM, TEM and uniaxial tensile tests. The results show that when the Al content is not higher than 0.5%, the alloys are mainly composed of α-Mg, Mg2Sn, Al8Mn5 and Mg7Zn3 phases. When the Al content is higher than 0.5%, the alloys mainly consist of α-Mg, Mg2Sn, MgZn, Mg32(Al,Zn)49, Al2Mg5Zn2, Al11Mn4 and Al8Mn5 phases. A small amount of Al (≤1%) can increase the proportion of fine dynamic recrystallized (DRXed) grains during hot-extrusion process. The room- temperature tensile test results show that the ZTM641−1Al alloy has the best comprehensive mechanical properties, in which the ultimate tensile strength is 332 MPa, yield strength is 221 MPa and the elongation is 15%. Elevated- temperature tensile test results at 150 and 200 °C show that ZTM641−2Al alloy has the best comprehensive mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号