首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了三维喷墨打印(3DP)工艺在中大型冲压模铸钢件制造生产中的应用。测试了打印砂型的抗拉强度、透气性、发气量等性能,并基于3DP工艺设计了砂型。结果表明,3DP打印砂型的抗拉强度可达1.70MPa,透气性大于400,最大发气量为14.6mL/g,均可满足合金钢铸造的使用要求。3DP打印砂型(芯)具有无需模具、可以采用砂型和砂芯整体化工艺等特点,提高了铸件的精度。通过对3DP砂型设计,并通过特殊工艺方法,解决了打印砂型的铸字清晰度的问题。  相似文献   

2.
对型砂的热湿拉强度、砂型退让性、排气性、缺陷部位退让空间等因素对气缸体夹砂缺陷的影响情况进行了研究。确定采取:上型夹砂部位不喷涂料、加强排气;下型夹砂部位增设φ4×25 mm的孔洞,以分割大平面增加退让空间等措施。气缸体铸件夹砂缺陷得到了较好的解决。  相似文献   

3.
微观组织对A201铝合金铸件机械性能之研究   总被引:4,自引:2,他引:2  
郭永圣 《铸造技术》2006,27(11):1196-1199
系统改变A201铝合金平板铸件的长度、厚度及冒口大小,探讨微观组织中微孔隙量及树枝状晶胞尺寸(DCS)对A201铸件抗拉强度及伸长率的影响程度,进而于铸造实务工作时,可为冒口设计及金属凝固之参考,为研究的目的。砂型的种类有三种,分别是100%石英砂的A类石英砂、50%石英砂及50%铬砂的B类、及100%铬砂的C类。实验结果显示,A201铝合金平板铸件的机械性质同时受空孔量及DCS之影响,当微孔隙量增加及DCS变大时,均会降低铸件的抗拉强度及伸长率,其中微孔隙量影响为主要的因素。  相似文献   

4.
The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux of the air cavity in the 3D printed sand mold was significantly less than that of resin-bonded sand. The insulation effect of the air cavity in sand molds for a cylinder casting and a stress-frame casting were simulated using software COMSOL. The results illustrated that the air cavity could be used to insulate the riser and it was more suitable for a lower melting point metal casting. An air cavity with 10-15 mm width and 5-10 mm away from the riser can significantly prolong the solidification of the riser by over 10%. Meanwhile, the sand mold for the stressframe was made by 3D printing technology and poured with aluminum alloy A356 melt. The experiment results showed that the presence of the air cavity led to a 12.5% increase of the solidification time of its riser.  相似文献   

5.
An orthogonal test was conducted to investigate the influence of technical parameters of squeeze casting on the strength and ductility of AlSi9Cu3 alloys. The experimental results showed that when the forming pressure was higher than 65 MPa, the strength (σb) of AlSi9Cu3 alloys decreased with the forming pressure and pouring temperature increasing, whereas σb increased with the increase of filling velocity and mould preheating temperature. The ductility (δ) by alloy was improved by increasing the forming pressure and filling velocity, but decreased with pouring temperature increasing. When the mould preheating temperature increased, the ductility increased first, and then decreased. Under the optimized parameters of pouring temperature 730 °C, forming pressure 75 MPa, filling velocity 0.50 m/s, and mould preheating temperature 220 °C, the tensile strength, elongation, and hardness of AlSi9Cu3 alloys obtained in squeeze casting were improved by 16.7%, 9.1%, and 10.1%, respectively, as compared with those of sand castings.  相似文献   

6.
Binder jetting 3D printing is a rapid, cost effective, and efficient moulding/core making process, which can be applied to a large variety of materials. However, it exhibits a relatively low green-part strength. This may cause the collapse of the printed parts during de-caking and the pick-up procedure, especially in the case of small-scale structures, such as thin walls, tips, and channels. In this work, polyvinyl alcohol (PVA) was used as the additive in coated sand powder. By exploiting the binding effect between the two composites (thermoplastic phenolic resin and PVA) triggered by the binder, bonding necks firmly form among the sand particles, improving the green-part strength of the coated sand printed parts. Experiments based on the Taguchi method were used to investigate the relationship between the process parameters and the green-part tensile strength. The following set of optimal process parameters was identified:50wt.% alcoholicity of the binder, 75% binder saturation, 0.36 mm layer thickness and 4.5wt.% PVA content. Further, the effect of such parameters on the green-part tensile strength was determined via statistical analysis. The green part of an engine cylinder head sand pattern with complex cavity structures was printed, and the green-part tensile strength reached 2.31 MPa. Moreover, the ZL301 aluminum alloy impeller shape casting was prepared using sand molds printed with the optimal process parameters. The results confirm that the proposed binder jetting 3D printing process can guarantee the integrity of the printed green parts and of small-size structures during decaking and the pick-up procedure. Furthermore, the casting made from the printed sand molds exhibits a relatively high quality.  相似文献   

7.
The load on flange castings in sand molds was gradually increased beginning from the end of the solidification process until the final cooling stage. The maximum tensile load on the flange castings in furan sand molds was larger than that of the flange castings in green sand molds. With the furan sand mold, permanent deformation in the flange castings occurred beginning from the end of the solidification process until reaching a temperature of approximately 250 °C. The mechanical interaction between the casting and the sand mold should be considered for more accurate stress calculations, particularly in furan sand molds.  相似文献   

8.
Shangguan  Hao-long  Kang  Jin-wu  Yi  Ji-hao  Deng  Cheng-yang  Hu  Yong-yi  Huang  Tao 《中国铸造》2018,15(3):210-215
3D printing technology has been used for sand molding and core printing, but they simply substitute the traditional molding and core making method without changing the shape or size of the sand mold(core) and their dense structure. In this study, a new type of hollow mold based on 3D printing is presented. The new type of mold is a rib reinforced thickness-varying shell mold. This mold design can realize the controlled cooling of castings, i.e., different cooling rates at different areas, and improve the temperature uniformity of a casting after its solidifi cation. Therefore, the performance of castings can be improved and their residual stress and deformation can be reduced. This kind of new mold was applied to a stress frame of A356 aluminum alloy. The 3D printed rib reinforced thickness-varying shell mold was compared with the traditional dense mold, and the castings obtained by these two kinds of molds were also compared. The experimental results showed that the rib reinforced shell mold increased the cooling rate of the casting by 30%, tensile strength by 17%, yield strength by 11%, elongation by 67%, and decreased its deformation by 43%, while sand consumption was greatly reduced by 90%.  相似文献   

9.
采用真空熔炼方法,在不同铸型(金属型、石墨型和砂型)中制备了Al-35La合金试样,研究了其组织形貌和力学性能及组织的形成原因。结果表明,Al-35La合金在不同铸型中的凝固组织均是周期性双相枝晶组织;不同铸型中试样的硬度和相对压缩率相差不大;合金的抗压强度较高且具有10%左右的相对压缩率,这与合金组织中Al11La3枝晶不连续分布,从而使组织细化的特征相一致。  相似文献   

10.
设计制作了适宜浇注法的测试砂型热物性值的装置,通过浇注铸铝实验,采集到离铸件—铸型界面不同距离的六个点的温度随时间的变化值,经过微机处理得出树脂砂型的表观热扩散率和导热系数随温度变化曲线,为研究铸铝件铸造工艺CAD提供了参数。  相似文献   

11.
分别使用普通硅砂和铬铁矿砂浇注铝合金阶梯试样,分析其试棒的抗拉强度、屈服强度、伸长率以及硬度,分析其金相组织,测其晶粒度和二次枝晶间距并进行对比.试验表明,采用铬铁矿砂铸造,明显提高铸件的抗拉强度;伸长率在壁较薄处也有较大提升,而在壁厚较厚处则优势下降;晶粒细化效果显著,晶粒度和二次枝晶间距优于普通硅砂铸件,冷却速度敏感性小于普通硅砂铸件.因此铬铁矿砂更适合于作为强度要求高的铸件,但是由于其强烈的激冷效果使得金属液流动性变差,因此不适合做形状复杂铸件的造型材料,加之价格昂贵,其使用受到限制.  相似文献   

12.
王绪然  王忠 《铸造技术》2006,27(9):947-949
球铁件铁丸真空实型铸造时,造型材料采用粒径分别为φ0.3 mm、φ0.5 mm、φ0.8 mm的空气雾化铁丸,按比例混合,混后其紧实堆装密度宜为4.78 g/cm3。造型时振动频率为50 Hz,振幅在0.5~1.5 mm之间,振动时间5 min左右。浇注时铸型真空度根据铸件的尺寸和质量控制在-0.038~-0.068 MPa之间。力学性能检测结果为(QT500-7):бb(铁丸)≥568 MPa,бb(干砂)≥514 MPa,比干砂铸造提高约10%;δ(铁丸)均=9.2%,δ(干砂)均=8.8%,基本无变化。  相似文献   

13.
You  Zhi-yong  Jiang  Ao-xue  Duan  Zhuang-zheng  Qiao  Gang-ping  Gao  Jing-lei  Guo  Ling-bing 《中国铸造》2020,17(3):219-226
Semi-solid AZ91D magnesium alloy billets were prepared by near-liquidus heat holding. Semi-solid squeeze casting was conducted at 575, 585 and 595 ℃, respectively, with 1 mm·s~(-1) squeeze speed. The semisolid squeeze casting AZ91D samples were heat treated by T4(solution at 415 ℃ for 24 h) and T6(solution at 415 ℃ for 24 h + 220 ℃ for 8 h) processes, respectively. The microstructure and mechanical properties of the alloy in different states were investigated by means of OM, SEM and tensile testing machine. The results show that compared to as-cast alloy, the grain size of the semi-solid squeezed AZ91D decreased significantly, and with the increase of semi-solid squeeze temperature, the grain size of AZ91D increased. The grains of the alloy were refined by T4 treatment, and further refined by T6 treatment. T6 treatment greatly improved the tensile strength, elongation, and hardness, but did not significantly improve yield strength. After 575 ℃ squeeze casting and T6 treatment, the ultimate tensile strength(UTS) reached 285 MPa, the elongation reached 13.36%, and the hardness also reached the maximum(106.8 HV), but the yield strength(YS) was only 180 MPa. During the process of semi-solid squeeze casting and heat treatment, the matrix grain was refined and a large number of precipitated and secondary precipitated phases of Mg_(17)Al_(12) appeared. Both the average size of matrix grain and secondary precipitated phase decreased, while the volume fraction of secondary precipitated phase increased. All these resulted in high tensile strength, elongation and hardness.  相似文献   

14.
通过光学显微镜(OM)、扫描电镜(SEM)、室温拉伸试验等研究了成形速度对7050铝合金锻件显微组织、力学性能和断口形貌的影响。结果表明,随成形速度的增加,7050铝合金锻件的晶粒截面形貌逐渐由圆形过渡到细长状,且局部出现粗化。抗拉强度和屈服强度随成形速度增加呈先增加后减小的趋势,伸长率随成形速度的增加逐渐减小;当成形速度为2 mm/s时,抗拉强度、屈服强度分别达到608 MPa和560 MPa,伸长率为12.7%;当成形速度分别为2 mm/s和8 mm/s时,拉伸后试样的断裂形式以穿晶断裂为主,伴随着少量的第二相粗大颗粒和晶间断裂,且随着成形速度的减小,韧窝数量不断增加,韧窝深度也逐渐变深。实际热模锻生产成形速度宜选择2~8 mm/s。  相似文献   

15.
An Al-11Mg2Si-Si in situ composite was prepared by a modified investment casting technique that employs sub-pressure for castability improvement and immersion of ceramic shell molds in fluidized beds of silica sand and iron particles for heat extraction improvement. The microstructure of the as-cast composite is explained according to the pseudoeutectic Al-Mg2Si phase diagram. The positive effect of a decreased number of mold investment layers and cooling assisted by immersion of the mold in a metallic bed on the tensile strength and hardness of the heat treated composite is noted. A minor presence of Fe in the master alloys constitutes an essential factor for the brittleness of the composite. Solution treatment notably improves the tensile strength of the composite; however, prolonged treatment deteriorates its ductility. The effect of time and temperature of the aging treatment on the hardness of the composite is investigated. The positive influence of cooling assisted by a metallic fluidized bed on the effectiveness of the aging treatment is noticed.  相似文献   

16.
In order to improve the performance of plaster molds for investment casting,a diverse content of glass fiber and polypropylene (PP) fiber was incorporated into the slurry for the preparation of a fiber-reinforced mold.The green and fired bending strengths,thermal expansion properties,permeability,and thermal shock resistance of the mold were examined,and the scanning electron microscope (SEM) with energy dispersive spectrometer (EDS) was applied for the observation of fracture morphology.With appropriate content,the introduction of glass fiber was proved to increase the green bending strength and fired bending strength,restrain the thermal expansion and improve the thermal shock resistance of the mold,while the polypropylene fiber added was able to raise the green bending strength and the permeability,reduce the thermal expansion and heighten the thermal shock resistance as well,though the fired bending strength would be weakened slightly.Evenly distributed fibers were capable of enhancing the mechanical properties of the matrix,but agglomerations and bundles of fibers resulting from excessive addition had a negative impact.Meanwhile,it was also manifested that micropores left by ablative polypropylene fibers could improve the permeability and reduce the thermal expansion of the mold,and the fired bending strength would be decreased slightly by the deterioration of continuous structure.Three different ratios of hybrid fiber were employed in plaster molds,which can meet altered requirement of castings.The samples modified with hybrid fiber possessed lower thermal deformation,higher air permeability,and better resistance of thermal shock,while the mechanical strength was equal to the fiber free sample or slightly increased.  相似文献   

17.
研究了在陶瓷浆料中加入玻璃纤维对浆料粘度及陶瓷坯体抗拉强度的影响。选择的陶瓷坯体以石英砂、硅溶胶为主要原料,玻璃纤维的直径为16μm,长度为1~3mm。结果表明,在陶瓷型中加入一定量的玻璃纤维后,陶瓷型的抗拉强度会升高;在焙烧温度为400℃时,在一定范围内,随着玻璃纤维增加,陶瓷型抗拉强度呈线性增加,从0.175MPa增加至0.221MPa,陶瓷浆料的粘度也会呈指数形式增大。  相似文献   

18.
The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. In this study, the slot gating system is employed to improve mold filling behavior and therefore, to improve the quality of aluminum castings produced in permanent molds. An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum flowing into permanent molds have been developed. Graphite molds transparent to X-rays are utilized which make it possible to observe the flow pattern through a number of vertically oriented gating systems. The investigation discovers that there are many influencing factors on the mold filling process. This paper focuses its research on some of the factors, such as the dimensions of the vertical riser and slot thickness, as well as roughness of the coating layer. The results indicate that molten metal can smoothly fill into casting cavity with a proper slot gating system. A bigger vertical riser, proper slot thickness and rougher coating can provide not only a better mold filling pattern, but also hot melt into the top of the cavity. A proper temperature gradient is obtainable, higher at the bottom and lower at the top of the casting cavity, which is in favor of feeding during casting solidification.  相似文献   

19.
夏露  张友寿  黄晋 《铸造技术》2007,28(11):1428-1430
研究了含硼改性剂对铝磷酸盐粘结剂理化性能及热硬砂性能的影响。结果表明:含硼改性剂可有效提高铝磷酸盐热硬砂型(芯)的干强度和较低湿度下的抗吸湿性;随含硼改性剂的增加,粘结荆的密度、粘度增大,稳定性下降。  相似文献   

20.
介绍了MKJ水冷灰铸铁排气管的铸件结构及技术要求,并详细阐述其生产工艺:覆砂铁型铸造,采用带有过滤网和集渣包的半开放式浇注系统;型腔覆砂层为8~10 mm;在砂芯中安放芯骨,芯头以相连的方式来加强砂芯结构强度;孕育剂为75%的SiCaBa+25%的75SiFe,包内加入,加入量为0.4%,处理温度为1 500~1 515℃,浇注温度为1 410~1 440℃。最终生产的MKJ排气管无裂纹、漏气等现象发生;金相组织为:石墨全部为A型,石墨长度为4级,基体组织为95%的珠光体;抗拉强度为275 MPa,硬度为202 HB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号