首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Osteosarcoma (OS) is a malignancy that is becoming increasingly common in adolescents. OS stem cells (OSCs) form a dynamic subset of OS cells that are responsible for malignant progression and chemoradiotherapy resistance. The unique properties of OSCs, including self-renewal, multilineage differentiation and metastatic potential, 149 depend closely on their tumor microenvironment. In recent years, the likelihood of its dynamic plasticity has been extensively studied. Importantly, the tumor microenvironment appears to act as the main regulatory component of OS cell plasticity. For these reasons aforementioned, novel strategies for OS treatment focusing on modulating OS cell plasticity and the possibility of modulating the composition of the tumor microenvironment are currently being explored. In this paper, we review recent studies describing the phenomenon of OSCs and factors known to influence phenotypic plasticity. The microenvironment, which can regulate OSC plasticity, has great potential for clinical exploitation and provides different perspectives for drug and treatment design for OS.  相似文献   

2.
Distant spreading of tumor cells to the central nervous system in non-small cell lung cancer (NSCLC) occurs frequently and poses major clinical issues due to limited treatment options. RNAs displaying differential expression in brain metastasis versus primary NSCLC may explain distant tumor growth and may potentially be used as therapeutic targets. In this study, we conducted systematic microRNA expression profiling from tissue biopsies of primary NSCLC and brain metastases from 25 patients. RNA analysis was performed using the nCounter Human v3 miRNA Expression Assay, NanoString technologies, followed by differential expression analysis and in silico target gene pathway analysis. We uncovered a panel of 11 microRNAs with differential expression and excellent diagnostic performance in brain metastasis versus primary NSCLC. Five microRNAs were upregulated in brain metastasis (miR-129-2-3p, miR-124-3p, miR-219a-2-3p, miR-219a-5p, and miR-9-5p) and six microRNAs were downregulated in brain metastasis (miR-142-3p, miR-150-5p, miR-199b-5p, miR-199a-3p, miR-199b-5p, and miR-199a-5p). The differentially expressed microRNAs were predicted to converge on distinct target gene networks originating from five to twelve core target genes. In conclusion, we uncovered a unique microRNA profile linked to two target gene networks. Our results highlight the potential of specific microRNAs as biomarkers for brain metastasis in NSCLC and indicate plausible mechanistic connections.  相似文献   

3.
Colorectal cancer is one of the most common digestive tract malignancies in the world. Owing to the newer and more effective systemic therapies, the life of colorectal cancer patients can be remarkably prolonged, and the incidence of brain metastases is increasing. However, little is known about the underlying mechanisms of brain metastasis from colorectal cancer. Here we review the tumor microenvironment and metastasis associated molecules in brain metastases from colorectal cancer. A further understanding of these mechanisms will help us to propose better strategies for colorectal cancer patients with brain metastasis and improve their life quality.  相似文献   

4.
We investigated whether irradiated brain-derived neurotropic factor (BDNF)-overexpressing engineered human mesenchymal stem cells (BDNF-eMSCs) improve paracrine efficiency and, thus, the beneficial potency of naïve MSCs against severe hypoxic ischemic (HI) brain injury in newborn rats. Irradiated BDNF-eMSCs hyper-secreted BDNF > 10 fold and were >5 fold more effective than naïve MSCs in attenuating the oxygen-glucose deprivation-induced increase in cytotoxicity, oxidative stress, and cell death in vitro. Only the irradiated BDNF-eMSCs, but not naïve MSCs, showed significant attenuating effects on severe neonatal HI-induced short-term brain injury scores, long-term progress of brain infarct, increased apoptotic cell death, astrogliosis and inflammatory responses, and impaired negative geotaxis and rotarod tests in vivo. Our data, showing better paracrine potency and the resultant better therapeutic efficacy of the irradiated BDNF-eMSCs, compared to naïve MSCs, suggest that MSCs transfected with the BDNF gene might represent a better, new therapeutic strategy against severe neonatal HI brain injury.  相似文献   

5.
Up to 40% of advance lung, melanoma and breast cancer patients suffer from brain metastases (BM) with increasing incidence. Here, we assessed whether circulating tumor cells (CTCs) in peripheral blood can serve as a disease surrogate, focusing on CD44 and CD74 expression as prognostic markers for BM. We show that a size-based microfluidic approach in combination with a semi-automated cell recognition system are well suited for CTC detection in BM patients and allow further characterization of tumor cells potentially derived from BM. CTCs were found in 50% (7/14) of breast cancer, 50% (9/18) of non-small cell lung cancer (NSCLC) and 36% (4/11) of melanoma patients. The next-generation sequencing (NGS) analysis of nine single CTCs from one breast cancer patient revealed three different CNV profile groups as well as a resistance causing ERS1 mutation. CD44 and CD74 were expressed on most CTCs and their expression was strongly correlated, whereas matched breast cancer BM tissues were much less frequently expressing CD44 and CD74 (negative in 46% and 54%, respectively). Thus, plasticity of CD44 and CD74 expression during trafficking of CTCs in the circulation might be the result of adaptation strategies.  相似文献   

6.
Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells.  相似文献   

7.
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC non-CSCs and their significance for metastasis are considered.  相似文献   

8.
Pancreatic cancer is a fatal disease with a 5-year survival rate below 5%. Most patients are diagnosed at an advanced tumor stage and existence of distant metastases. However, involvement of the central nervous system is rare in pancreatic cancer. We retrospectively analyzed all cases of brain metastases in pancreatic cancer reported to date focusing on patient characteristics, clinical appearance, therapy and survival. Including our own, 12 cases of brain metastases originating from pancreatic cancer were identified. In three patients brain metastases were the first manifestation of pancreatic cancer. All other patients developed brain metastases during their clinical course. In most cases, the disease progressed rapidly and the patients died within weeks or months. However, two patients showed long-term survival. Of note, both patients received resection of the pancreatic cancer as well as curative resection of the metachronous brain metastases. Brain metastases in pancreatic cancer are a rare condition and usually predict a very poor prognosis. However, there is evidence that resection of brain metastases of pancreatic cancer can be immensely beneficial to patient’s survival, even with the chance for cure. Therefore, a surgical approach in metastatic pancreatic cancer should be considered in selective cases.  相似文献   

9.
Traumatic brain injuries (TBIs) are a significant health problem both in the United States and worldwide with over 27 million cases being reported globally every year. TBIs can vary significantly from a mild TBI with short-term symptoms to a moderate or severe TBI that can result in long-term or life-long detrimental effects. In the case of a moderate to severe TBI, the primary injury causes immediate damage to structural tissue and cellular components. This may be followed by secondary injuries that can be the cause of chronic and debilitating neurodegenerative effects. At present, there are no standard treatments that effectively target the primary or secondary TBI injuries themselves. Current treatment strategies often focus on addressing post-injury symptoms, including the trauma itself as well as the development of cognitive, behavioral, and psychiatric impairment. Additional therapies such as pharmacological, stem cell, and rehabilitative have in some cases shown little to no improvement on their own, but when applied in combination have given encouraging results. In this review, we will abridge and discuss some of the most recent research advances in stem cell therapies, advanced engineered biomaterials used to support stem transplantation, and the role of rehabilitative therapies in TBI treatment. These research examples are intended to form a multi-tiered perspective for stem-cell therapies used to treat TBIs; stem cells and stem cell products to mitigate neuroinflammation and provide neuroprotective effects, biomaterials to support the survival, migration, and integration of transplanted stem cells, and finally rehabilitative therapies to support stem cell integration and compensatory and restorative plasticity.  相似文献   

10.
5-Aminolevulinic acid (5-ALA) is a naturally occurring non-proteinogenic amino acid, which contributes to the diagnosis and therapeutic approaches of various cancers, including glioblastoma (GBM). In the present study, we aimed to investigate whether 5-ALA exerted cytotoxic effects on GBM cells. We assessed cell viability, apoptosis rate, mRNA expressions of various apoptosis-related genes, generation of reactive oxygen species (ROS), and migration ability of the human U-87 malignant GBM cell line (U87MG) treated with 5-ALA at different doses. The half-maximal inhibitory concentration of 5-ALA on U87MG cells was 500 μg/mL after 7 days; 5-ALA was not toxic for human optic cells and NIH-3T3 cells at this concentration. The application of 5-ALA led to a significant increase in apoptotic cells, enhancement of Bax and p53 expressions, reduction in Bcl-2 expression, and an increase in ROS generation. Furthermore, the application of 5-ALA increased the accumulation of U87MG cells in the SUB-G1 population, decreased the expression of cyclin D1, and reduced the migration ability of U87MG cells. Our data indicate the potential cytotoxic effects of 5-ALA on U87MG cells. Further studies are required to determine the spectrum of the antitumor activity of 5-ALA on GBM.  相似文献   

11.
Brain tumors are the most common malignant primary intracranial tumors of the central nervous system. They are often recognized too late for successful therapy. Minimally invasive methods are needed to establish a diagnosis or monitor the response to treatment of CNS tumors. Brain tumors release molecular information into the circulation. Liquid biopsies collect and analyze tumor components in body fluids, and there is an increasing interest in the investigation of liquid biopsies as a substitute for tumor tissue. Tumor-derived biomarkers include nucleic acids, proteins, and tumor-derived extracellular vesicles that accumulate in blood or cerebrospinal fluid. In recent years, circulating tumor cells have also been identified in the blood of glioblastoma patients. In this review of the literature, the authors highlight the significance, regulation, and prevalence of molecular biomarkers such as O6-methylguanine-DNA methyltransferase, epidermal growth factor receptor, and isocitrate dehydrogenase. Herein, we critically review the available literature on plasma circulating tumor cells (CTCs), cell-free tumors (ctDNAs), circulating cell-free microRNAs (cfmiRNAs), and circulating extracellular vesicles (EVs) for the diagnosis and monitoring of brain tumor. Currently available markers have significant limitations. While much research has been conductedon these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature.  相似文献   

12.
The concept of the existence of a subset of cancer cells with stem cell-like properties, which are thought to play a significant role in tumor formation, metastasis, resistance to anticancer therapies and cancer recurrence, has gained tremendous attraction within the last decade. These cancer stem cells (CSCs) are relatively rare and have been described by different molecular markers and cellular features in different types of cancers. Ten years ago, a novel class of molecules, small non-protein-coding RNAs, was found to be involved in carcinogenesis. These small RNAs, which are called microRNAs (miRNAs), act as endogenous suppressors of gene expression that exert their effect by binding to the 3′-untranslated region (UTR) of large target messenger RNAs (mRNAs). MicroRNAs trigger either translational repression or mRNA cleavage of target mRNAs. Some studies have shown that putative breast cancer stem cells (BCSCs) exhibit a distinct miRNA expression profile compared to non-tumorigenic breast cancer cells. The deregulated miRNAs may contribute to carcinogenesis and self-renewal of BCSCs via several different pathways and can act either as oncomirs or as tumor suppressive miRNAs. It has also been demonstrated that certain miRNAs play an essential role in regulating the stem cell-like phenotype of BCSCs. Some miRNAs control clonal expansion or maintain the self-renewal and anti-apoptotic features of BCSCs. Others are targeting the specific mRNA of their target genes and thereby contribute to the formation and self-renewal process of BCSCs. Several miRNAs are involved in epithelial to mesenchymal transition, which is often implicated in the process of formation of CSCs. Other miRNAs were shown to be involved in the increased chemotherapeutic resistance of BCSCs. This review highlights the recent findings and crucial role of miRNAs in the maintenance, growth and behavior of BCSCs, thus indicating the potential for novel diagnostic, prognostic and therapeutic miRNA-based strategies.  相似文献   

13.
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood–brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.  相似文献   

14.
Small-cell lung cancer (SCLC) is characterized as an aggressive tumor with brain metastasis. Although preventing SCLC metastasis to the brain is immensely important for survival, the molecular mechanisms of SCLC cells penetrating the blood–brain barrier (BBB) are largely unknown. Recently, visfatin has been considered as a novel pro-inflammatory adipocytokine involved in various cancers. Herein, we present evidence that elevated levels of visfatin in the serum of SCLC patients were associated with brain metastasis, and visfain was increased in NCI-H446 cells, a SCLC cell line, during interacting with human brain microvascular endothelial cells (HBMEC). Using in vitro BBB model, we found that visfatin could promote NCI-H446 cells migration across HBMEC monolayer, while the effect was inhibited by knockdown of visfatin. Furthermore, our findings indicated that CC chemokine ligand 2 (CCL2) was involved in visfatin-mediated NCI-H446 cells transendothelial migtation. Results also showed that the upregulation of CCL2 in the co-culture system was reversed by blockade of visfatin. In particular, visfatin-induced CCL2 was attenuated by specific inhibitor of PI3K/Akt signaling in NCI-H446 cells. Taken together, we demonstrated that visfatin was a prospective target for SCLC metastasis to brain, and understanding the molecular mediators would lead to effective strategies for inhibition of SCLC brain metastasis.  相似文献   

15.
Recent advances in our understanding of breast cancer have demonstrated that cancer stem-like cells (CSCs, also known as tumor-initiating cell (TICs)) are central for progression and recurrence. CSCs are a small subpopulation of cells present in breast tumors that contribute to growth, metastasis, therapy resistance, and recurrence, leading to poor clinical outcome. Data have shown that cancer cells can gain characteristics of CSCs, or stemness, through alterations in key signaling pathways. The dysregulation of miRNA expression and signaling have been well-documented in cancer, and recent studies have shown that miRNAs are associated with breast cancer initiation, progression, and recurrence through regulating CSC characteristics. More specifically, miRNAs directly target central signaling nodes within pathways that can drive the formation, maintenance, and even inhibition of the CSC population. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as biomarkers and promising clinical therapeutics, and presents a comprehensive summary of currently validated targets involved in CSC-specific signaling pathways in breast cancer.  相似文献   

16.
Glioblastoma (GBM) is one of the deadliest of all human cancers. Developing therapies targeting GBM cancer stem cells or glioma stem cells (GSCs), which are deemed responsible for the malignancy of GBM due to their therapy resistance and tumor-initiating capacity, is considered key to improving the dismal prognosis of GBM patients. In this study, we found that folate antagonists, such as methotrexate (MTX) and pemetrexed, are selectively cytotoxic to GSCs, but not to their differentiated counterparts, normal fibroblasts, or neural stem cells in vitro, and that the high sensitivity of GCSs to anti-folates may be due to the increased expression of RFC-1/SLC19A1, the reduced folate carrier that transports MTX into cells, in GSCs. Of note, in an in vivo serial transplantation model, MTX alone failed to exhibit anti-GSC effects but promoted the anti-GSC effects of CEP1347, an inducer of GSC differentiation. This suggests that folate metabolism, which plays an essential role specifically in GSCs, is a promising target of anti-GSC therapy, and that the combination of cytotoxic and differentiation therapies may be a novel and promising approach to effectively eliminate cancer stem cells.  相似文献   

17.
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.  相似文献   

18.
Stemness reprogramming remains a largely unaddressed principal cause of lethality in glioblastoma (GBM). It is therefore of utmost importance to identify and target mechanisms that are essential for GBM stemness and self-renewal. Previously, we implicated BIRC3 as an essential mediator of therapeutic resistance and survival adaptation in GBM. In this study, we present novel evidence that BIRC3 has an essential noncanonical role in GBM self-renewal and stemness reprogramming. We demonstrate that BIRC3 drives stemness reprogramming of human GBM cell lines, mouse GBM cell lines and patient-derived GBM stem cells (GSCs) through regulation of BMP4 signaling axis. Specifically, BIRC3 induces stemness reprogramming in GBM through downstream inactivation of BMP4 signaling. RNA-Seq interrogation of the stemness reprogramming hypoxic (pseudopalisading necrosis and perinecrosis) niche in GBM patient tissues further validated the high BIRC3/low BMP4 expression correlation. BIRC3 knockout upregulated BMP4 expression and prevented stemness reprogramming of GBM models. Furthermore, siRNA silencing of BMP4 restored stemness reprogramming of BIRC3 knockout in GBM models. In vivo silencing of BIRC3 suppressed tumor initiation and progression in GBM orthotopic intracranial xenografts. The stemness reprograming of both GSCs and non-GSCs populations highlights the impact of BIRC3 on intra-tumoral cellular heterogeneity GBM. Our study has identified a novel function of BIRC3 that can be targeted to reverse stemness programming of GBM.  相似文献   

19.
We studied cell proliferation in the postnatal mouse brain between the ages of 2 and 30 months and identified four compartments with different densities of proliferating cells. The first identified compartment corresponds to the postnatal pallial neurogenic (PPN) zone in the telencephalon; the second to the subpallial postnatal neurogenic (SPPN) zone in the telencephalon; the third to the white matter bundles in the telencephalon; and the fourth to all brain parts outside of the other three compartments. We estimated that about 3.4 million new cells, including 0.8 million in the subgranular zone (SGZ) in the hippocampus, are produced in the PPN zone. About 21 million new cells, including 10 million in the subependymal zone (SEZ) in the lateral walls of the lateral ventricle and 2.7 million in the rostral migratory stream (RMS), are produced in the SPPN zone. The third and fourth compartments together produced about 31 million new cells. The analysis of cell proliferation in neurogenic zones shows that postnatal neurogenesis is the direct continuation of developmental neurogenesis in the telencephalon and that adult neurogenesis has characteristics of the late developmental process. As a developmental process, adult neurogenesis supports only compensatory regeneration, which is very inefficient.  相似文献   

20.
Cancer is one of the most common diseases worldwide, and treatment bears many challenges such as drug and radioresistance and formation of metastases. These difficulties are due to tumor heterogeneity, which has many origins. One may be cell fusion, a process that is relevant in both physiological (e.g., wound healing) and pathophysiological (cancer and viral infection) processes. In this study, we examined if cell fusion between mesenchymal stem/stromal cells (MSCs) and breast cancer (BC) cells occurs and if newly generated hybrid cells may exhibit cancer stem/initiating cell (CS/IC) characteristics. Therefore, several methods such as mammosphere assay, AldeRed assay, flow cytometry (CD24, CD44, CD104) and Western blot analysis (of epithelial to mesenchymal transition markers such as SNAIL, SLUG and Twist) were applied. In short, four different hybrid clones, verified by short tandem repeat (STR) analysis, were analyzed; each expressed an individual phenotype that seemed not to be explicitly related to either a more stem cell or cancer cell phenotype. These results show that cancer cells and MSCs are able to fuse spontaneously in vitro, thereby giving rise to hybrid cells with new properties, which likely indicate that cell fusion may be a trigger for tumor heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号