首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable polymers have been widely used and have greatly promoted the development of biomedical fields because of their biocompatibility and biodegradability. The development of biotechnology and medical technology has set higher requirements for biomedical materials. Novel biodegradable polymers with specific properties are in great demand. Biodegradable polymers can be classified as natural or synthetic polymers according to the source. Synthetic biodegradable polymers have found more versatile and diverse biomedical applications owing to their tailorable designs or modifications. This review presents a comprehensive introduction to various types of synthetic biodegradable polymers with reactive groups and bioactive groups, and further describes their structure, preparation procedures and properties. The focus is on advances in the past decade in functionalization and responsive strategies of biodegradable polymers and their biomedical applications. The possible future developments of the materials are also discussed.  相似文献   

2.
Recently, thoughtful disagreements between scientists concerning environmental issues including the use of renewable materials have enhanced universal awareness of the use of biodegradable materials. Polylactic acid (PLA) is one of the most promising biodegradable materials for commercially replacing nondegradable materials such as polyethylene terephthalate and polystyrene. The main advantages of PLA production over the conventional plastic materials is PLA can be produced from renewable resources such as corn or other carbohydrate sources. Besides, PLA provides adequate energy saving by consuming CO2 during production. Thus, we aim to highlight recent research involving the investigation of properties of PLA, its applications and the four types of potential PLA degradation mechanisms. In the first part of the article, a brief discussion of the problems surrounding use of conventional plastic is provided and examples of biodegradable polymers currently used are provided. Next, properties of PLA, and (Poly[L-lactide]), (Poly[D-lactide]) (PDLA) and (Poly[DL-lactide]) and application of PLA in various industries such as in packaging, transportation, agriculture and the biomedical, textile and electronic industry are described. Behaviors of PLA subjected to hydrolytic, photodegradative, microbial and enzymatic degradation mechanisms are discussed in detail in the latter portion of the article.  相似文献   

3.
Poly(ester amide)s have emerged in the last years as an important family of biodegradable synthetic polymers. These polymers present both ester and amide linkages in their structure and they gather in the same entity the good degradability of polyesters with the good thermo-mechanical properties of polyamides. Particularly, poly(ester amide)s containing α-amino acids have risen as important materials in the biomedical field. The presence of the α-amino acid contributes to better cell–polymer interactions, allows the introduction of pendant reactive groups, and enhances the overall biodegradability of the polymers.  相似文献   

4.
通过紫外光自由基聚合制备了可生物降解交联网状聚(醚.酯)共聚物。测定了交联聚合物的接触角。研究了交联聚合物的体外降解特性,结果表明,降解时间取决于交联度和疏水程度(聚酯类型),大约从20min到7d。将交联聚合物涂在不锈钢针上,通过测定针穿透橡胶塞时的穿透力,研究了材料的润滑特性。与标准针相比,涂有PPG4000聚合物网络的针穿透力下降了40%,显示了较好的润滑性能。这些材料有可能作为可降解的润滑材料,包覆不同的医用产品,取代现在使用的非降解性硅树脂。  相似文献   

5.
The majority of the biodegradable polymers in clinical use are composed of stiff materials that exhibit limited extendibility with unsuitably high Young’s modulus and low elongation at break values that make them non-optimal for various biomedical applications. Polylactide (PLA) is often used as a biomedical material because it is biodegradable, but the physical and mechanical properties of PLA need to be improved for biomedical applications. In order to improve the flexibility and strength of biodegradable PLA, various reaction conditions were studied. Urethane structure polymer materials were prepared; PLA was reacted with a small amount of methacryloyloxyethyl isocyanate (MOI) to obtain a ductile PLA with markedly improved mechanical properties. Elongation at break increased by 20 times when compared to neat PLA. Impact resistance (notched) improved 1.6 times. Thus, this modified PLA biodegradable polymer may have greater application as a biomedical material with increased mechanical properties.  相似文献   

6.
This article reviews the degradability of chemically synthesized bioelastomers, mainly designed for soft tissue repair. These bioelastomers involve biodegradable polyurethanes, polyphosphazenes, linear and crosslinked poly(ether/ester)s, poly(ε-caprolactone) copolymers, poly(1,3-trimethylene carbonate) and their copolymers, poly(polyol sebacate)s, poly(diol-citrates) and poly(ester amide)s. The in vitro and in vivo degradation mechanisms and impact factors influencing degradation behaviors are discussed. In addition, the molecular designs, synthesis methods, structure properties, mechanical properties, biocompatibility and potential applications of these bioelastomers were also presented.  相似文献   

7.
A series of novel cross-linkable, highly halogenated poly(arylene ether ketone)s (HPAEKs) and poly(arylene ether sulfone)s (HPAESs) with different bromine contents have been designed and prepared by polycondensation reactions for use as optical waveguide materials. The method used for their preparation involved reacting decafluorodiphenyl ketone/sulfone (DFPK/DFPS) with a mixture of 4,4′-isopropylidene bis(2,6-dibromophenol) (4Br-BPA), 4,4′-(hexafluoroisopropylidene)diphenol (6F-BPA), and 1,1-bis(4-hydroxyphenyl)ethyl-1-phenyl-2,3,5,6-tetrafluorostyrol ether (BHPFS). The feed ratio of 4Br-BPA to the total bisphenols varied from 0 to 80 mol.%, while that of BHPFS remained at 20% for all polymers. The resulting polymers have excellent solubility in most common organic solvents such as tetrahydrofuran, cyclohexanone and N,N-dimethylacetamide (DMAc) and can be easily cast into optical-quality thin films. A high glass transition temperature in the range of 164-206 °C was found for these polymers, which could be further increased by about 20 °C upon thermal or photochemical cross-linking. Slab and channel waveguides have been prepared from these polymers. All of them exhibited low optical loss (0.4-0.6 dB/cm) at the telecommunication wavelength of 1550 nm. Due to the relatively higher polarizability of the C-Br bond than that of the C-H bond, an increase in the refractive index was observed as the bromine content in the polymers increased. Consequently, the refractive index of HPAEKs and HPAESs can be readily adjusted within a wide range from 1.51 to 1.57 by simply changing the ratio of the bromine-containing bisphenol in the feed. This variability, along with the excellent cross-linking capability, allows these polymers to be used as both the core and the cladding materials for the waveguide device fabrication and provides a greater flexibility in the design of device structures.  相似文献   

8.
A series of polyamides and poly(amide‐imide)s was prepared by direct polycondensation of ether and nitrile group containing aromatic diamines with aromatic dicarboxylic acids and bis(carboxyphthalimide)s respectively in N‐methyl 2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. New diamines, such as 2,6‐bis(4‐aminophenoxy)benzonitrile and 2,6‐bis(3‐aminophenoxy)benzonitrile, were prepared from 2,6‐dichlorobenzonitrile with 4‐aminophenol and 3‐aminophenol, respectively, in NMP using potassium carbonate. Bis(carboxyphthalimide)s were prepared from the reaction of trimellitic anhydride with various aromatic diamines in N,N′‐dimethyl formamide. The inherent viscosities of the resulting polymers were in the range of 0.27 to 0.93 dl g?1 in NMP and the glass transition temperatures were between 175 and 298 °C. All polymers were soluble in dipolar aprotic solvents such as dimethylsulfoxide, dimethylacetamide and NMP. All polymers were stable up to 350 °C with a char yield of above 40 % at 900 °C in nitrogen atmosphere. All polymers were found to be amorphous except the polyamide derived from isophthalic acid and the poly(amide‐imide)s derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
BACKGROUND: Poly(para‐dioxanone) (PPDO) is a biodegradable polyester with excellent biodegradability, bioabsorbability, biocompatibility and mechanical flexibility. However, its high cost and relatively fast degradation rate have hindered the development of commercial applications. Blending with other polymers is a simple and convenient way of modifying the properties of aliphatic polyesters. Poly(D ,L ‐lactide) (PDLLA) is another polyester that has been extensively studied for biomedical applications due to its biocompatibility and suitable degradation rate. However, to our knowledge, blends of PPDO/PDLLA have not been reported in the literature. RESULTS: A series of biodegradable polymers were blended by solution co‐precipitation of PPDO and PDLLA in various blend ratios. The miscibility, morphology and thermal properties of the materials were investigated. DSC curves for all blends revealed two discrete glass transition temperatures which matched the values for pure PPDO and PDLLA. SEM images of fracture surfaces displayed evidence of phase separation consistent with the DSC results. The contact angles increased with the addition of PDLLA. CONCLUSION: PPDO/PDLLA blends exhibit two distinct glass transition temperatures that remain nearly constant and correspond to the glass transition temperatures of the homopolymers for all blend compositions, indicating that blends of PPDO and PDLLA are immiscible. Images of the surface obtained using SEM were also suggestive of a two‐phase material. The crystallinity of the PPDO phase in the blends was affected by the PDLLA content. The mechanical properties of the blends changed dramatically with composition. Adding PDLLA makes the blends less hydrophilic than PPDO. Copyright © 2008 Society of Chemical Industry  相似文献   

10.
The thermal degradation of three poly(ester amide)s derived from glycolic acid and different ω‐amino acids is studied by thermogravimetric analysis (TGA) at different heating rates and the results are compared. Thermal decomposition follows a two‐step reaction, the mechanism involved in each step being possible to be determined. Nonisothermal integral isoconversional methods (such as Kissinger, KAS, and Flynn–Wall–Ozawa) and linear equations and differential methods (such as the Friedman expression) were used to obtain the kinetic parameters from TGA and DTGA curves. The complete kinetic triplets are also determined by the Coats–Redfern and the invariant kinetic parameters methodologies. Hydrolytic and enzymatic degradation studies, where weight losses, intrinsic viscosity changes and NMR spectra of degraded samples are evaluated, are also undertaken. The polymers seem interesting because of their application as new biodegradable materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5545–5558, 2006  相似文献   

11.
A thermoelectric (TE) material is a material where a potential difference is generated as a result of a temperature difference or the corollary of this where a temperature difference is generated when a voltage is applied. These phenomena can be used to generate electricity and/or control temperature. Traditionally, thermoelectric materials are inorganic semiconductors which have been limited in their application by low efficiency and high cost. Since the 1990s, both theoretical and experimental studies have shown that low-dimensional TE materials, such as superlattices and nanowires, can enhance the value of the TE figure of merit (ZT) which is an indicator of TE thermodynamic efficiency. To date it has not been feasible to apply these materials in large-scale energy-conversion processes because of limitations in both their heat transfer efficiency and cost. When compared to inorganic materials, organic conducting polymers possess some unique features, such as low density, low cost, low thermal conductivity, easy synthesis and versatile processability and their use in preparing polymer-inorganic TE nanocomposites appears to have great potential for producing relatively low cost and high-performance TE materials. Recently, an increasing number of studies have reported on polymeric and polymer-inorganic TE nanocomposite materials. The purpose of this paper is to review the research progress on the conducting polymers and their corresponding TE nanocomposites. Its main focus is the TE nanocomposites based on conducting polymers such as polyaniline (PANI), polythiophene (PTH), poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS), as well as other polymers such as polyacetylene (PA), polypyrrole (PPY), polycarbazoles (PC) and polyphenylenevinylene (PPV). Typically, polymer-inorganic TE nanocomposites are produced by physical mixing, solution mixing and in situ polymerization. The key factors that limit the use of these polymers and their polymer-inorganic TE nanocomposites as TE materials are their low ZT values. More recent developments designed to overcome the limitation including, for example, the use of carbon nanotubes and graphenes and the use of computational modelling to accelerate the selection of suitable pairs of conductive polymer and inorganic TE materials to achieve best possible nanocomposites are reviewed.  相似文献   

12.
BACKGROUND: Amphiphilic block and graft copolymers constitute a very interesting class of polymers with potential for biomedical applications, due to their special characteristics, which derive from the combination of properties of hydrophilic and hydrophobic moieties. In this work, the synthesis and biodegradation of poly(2‐hydroxyethyl methacrylate)‐graft‐poly(L ‐lactide) are studied. RESULTS: The graft copolymers were synthesized using the macromonomer technique. In a first step, methacryloyl‐terminated poly(L ‐lactide) macromonomers were synthesized in a wide molecular weight range using different catalysts. Subsequently, these macromonomers were copolymerized with 2‐hydroxyethyl methacrylate in order to obtain a graft copolymer. These new materials resemble hydrogel scaffolds with a biodegradable component. The biodegradation was studied in hydrolytic and enzymatic environments. The influence of different parameters (molecular weight, crystallinity, ratio between hydrophilic and hydrophobic components) on the degradation rate was investigated. CONCLUSION: Based on this study it will be possible to tailor the release properties of biodegradable materials. In addition, the materials will show good biocompatibility due to the hydrophilic poly(2‐hydroxyethyl methacrylate) hydrogel scaffold. This kind of material has potential for many applications, like controlled drug‐delivery systems or biodegradable implants. Copyright © 2008 Society of Chemical Industry  相似文献   

13.
Aromatic poly(azomethine)s have been studied due to their attractive properties such as high thermal stability, semiconducting behavior and the ability to coordinate species with their imine units (C?N). In this paper, the synthesis and characterization of two novel silylated poly(azomethine)s containing cardo units are reported. These materials were highly soluble in organic solvents such as chloroform and m‐cresol and were thermally stable, and PAzMC1 exhibited a high glass transition temperature value (287 °C), while that for PAzMC2 was not observed. UV–visible spectrophotometry revealed absorption bands related to the aromatic backbone of both PAzMCs, 300–285 nm in tetrahydrofuran and 310–301 nm in dimethylsulfoxide, and bands attributed to the conjugated imine unit at around 350 nm. In order to investigate the phenomenon of the emission of fluorescence promoted by dopant agents with regard to potential optoelectronic applications, the materials were doped with H2SO4 and their optical and electrochemical properties investigated. Thus, the absorption band of the imine group was suppressed due to the nitrogen atoms being protonated. Fluorescence spectroscopy analysis developed in dilute solutions of polymers showed no emission from the undoped polymers, whereas the acid‐doped species emitted fluorescence in the UV and violet regions (322 nm). Cyclic voltammetry measurements were carried out and HOMO–LUMO energies were estimated. This study provides a starting point for the development of new poly(azomethine)s with doping‐dependent emission. © 2019 Society of Chemical Industry  相似文献   

14.
Biodegradable elastomeric network poly(ester-carbonate)s were prepared from multifunctional aliphatic carboxylic acids such as tricarballylic acid (Yt) or trimesic acid (Y) and polycarbonate diols (PCD) with molecular weights of 1000 and 2000 g/mol. Prepolymers prepared by a melt polycondensation were cast from dimethylformamide solution and postpolymerized at 270 °C for 40-80 min to form a network. The resultant films were transparent, flexible and insoluble in organic solvents. WAXS exhibited the crystalline peaks due to polycarbonate segments for the network films from PCD2000, while those from PCD1000 were amorphous. The tensile properties were determined for these network films at the temperatures 22, 30, 40 and 50 °C. These films showed elastomeric properties at all temperatures measured. The elongation at break was much higher for the films from PCD2000 (208-434%) than those from PCD1000 (40-120%), and decreased with increasing temperatures. The weight losses of the network films degraded in the buffer solution of Rhizopus delemar lipase at 37 °C increased with time, suggesting that these network films are biodegradable. The degradation rate of the network films from Yt is faster than that from Y. The GPC curves showed that the lipase hydrolyzed both the ester linkages between Y or Yt and PCD as well as polycarbonate moiety in the network polymer.  相似文献   

15.
Radiopaque biodegradable polymers have been synthesized by ring‐opening polymerization of l /dl ‐lactide and caprolactone with the iodine‐containing starter molecule 2,2‐bis(hydroxymethyl)propane‐1,3‐diyl bis(2,3,5‐triiodobenzoate) followed by chain elongation with a diacid chloride or diisocyanates. The resulting polyesters and poly(ester‐urethanes) exhibited a radiopacity of 60?124% relative to an aluminium sample of the same thickness. The polymers were processed into monofilament fibres by melt‐spinning and into fibre meshes by electrospinning. All polymers were biodegradable in simulated body fluid medium under in vitro conditions and showed an excellent in vitro cytocompatibility even after several months of hydrolytic degradation. A current drawback is the relatively low tensile strength of the polymer monofilaments, which needs to be improved for applications as textile structures. Nevertheless, the new radiopaque and biodegradable polymers are promising candidates in fields of application where radiopacity of implants is an important parameter.  相似文献   

16.
Whole hop bines (HBs), the peeled outer bark (OB) of HBs, and fibers chemically extracted from hop bark (HFs) were used as reinforcements to make lightweight composites with polypropylene (PP) webs or fibers as the matrix materials. Using discarded HBs for composites not only increases the value of hop crops but also provides a green, sustainable, and biodegradable material for the composite industry. Lightweight composites are preferred, especially for automotive applications because of the potential energy savings. In this research, the effects of the processing parameters on the properties of PP composites reinforced with HBs were studied. The composites reinforced with OB without any chemical treatment showed better properties than the composites reinforced with HFs or HBs. Compared with jute–PP composites of the same density (0.47 g/cm3), composites reinforced with OB had 43% higher flexural strength, 46% higher impact resistance, 56% higher Young's modulus, similar modulus of elasticity, 33% lower tensile strength, and better sound‐absorption properties. OB–PP composites with optimized properties have the potential to be used in industrial applications such as support layers in automotive interiors, ceiling tiles, and office panels. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
综述了近年来国内外可降解高分子材料(如聚羟基丁酸戊酸共聚酯、聚碳酸亚丙酯、聚丁二酸丁二酯和聚乳酸),天然高分子材料(如淀粉、纤维素和木质素),无机填充物(如蒙脱土、有机黏土、碳纳米管和碳酸钙),以及扩链剂等对聚己二酸-对苯二甲酸丁二酯(PBAT)复合材料的改性研究进展。通过熔融共混改性,复合材料的力学性能、热性能、熔体黏度和尺寸稳定性有了很大提高。最后对PBAT未来的研究进行了展望。  相似文献   

18.
The skeleton performs motley of functions. Defected bones and metameric loss of bone are often resulted due to innate abnormalities and accidental injuries. An assessment is made on the diversity of chemistry of phosphazene with an inflection on new developments and their importance in tissue engineering. Tissue engineering mostly uses polymers that can biodegrade in porous/permeable scaffolds form for treating damaged tissues and skeleton. Demand of these polymers is increasing as timely substrates for tissue regeneration in contrast to the mostly used polyethylene terephalate, polyorthoesters, and poly(α-amino acids). Polyphosphazenes as biodegradable polymers have great potential for applications of tissue engineering. Due to biodegradability of P–N backbone, vast diversity of structure and high functional density polyphosphazenes provides many advantages for the formation of biologically compatible macromolecules. However, the nature of the side group determines the degradation ability of such polymers. These biodegradable polymers (polyphosphazenes) provide harmless and pH neutral substances because phosphates and ammonia have high buffer capacity. This review article focuses on the biocompatible polyphosphazenes and their utilization as regeneration of tissues, skeleton, and bones with a particular focus on materials that contains only polyphosphazenes, blends of polyphosphazene, and composites made from polyphosphazene.  相似文献   

19.
含有大共轭体系的聚亚苯基乙烯衍生物具有柔性好、驱动电压低和能带结构可调性等优点,一直是聚合物有机电致发光材料的研究重点。聚亚苯基乙烯衍生物的结构具有多重性,可以通过不同的合成方法获得,材料的设计较为便利。本文主要综述了最近几年来PPV衍生物电致发光材料的研究进展,并对其发展方向及应用前景进行评述。  相似文献   

20.
Stimuli‐responsive biocompatible and biodegradable materials can be obtained by combining polysaccharides with polymers exhibiting lower critical solution temperature (LCST) phase behavior, such as poly(N‐isopropylacrylamide) (PNIPAAm). The behavior of aqueous solutions of sodium alginate (NaAl) grafted with PNIPAAm (NaAl‐g‐PNIPAAm) copolymers as a function of composition and temperature is presented. The products obtained exhibit a remarkable thermothickening behavior in aqueous solutions if the degree of grafting, the concentration, and the temperature are higher than some critical values. The sol–gel‐phase transition temperatures have been determined. It was found that at temperatures below LCST the systems behave like a solution, whereas at temperatures above LCST, the solutions behave like a stiff gel, because of PNIPAAm segregation. This behavior is reversible and could find applications in tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号