首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ti–Al surface alloy was fabricated using a cyclic pulsed liquid-phase mixing of predeposited 100 nm Al film with a-Ti substrate by low-energy high-current electron beam. Electron probe micro-analysis(EPMA),grazing incidence X-ray diffraction analysis(GIXRD),transmission electron microscopy(TEM), and nanoindentation were used to investigate the characterization of Ti–Al surface alloy. The experimental results show that the thickness of alloy layer is *3 lm, and the content of Al in the *1 lm thickness surface layer is *60 at%. The tetragonal TiAl and TiAl2intermetallics were synthesized at the top surface, which have nanocrystalline structure.The main phase formed in the *2.5 lm thick surface is TiAl, and there are few TiAl2and Ti3Al phase for the alloy.Dislocation is enhanced in the alloyed layer. The nanohardness of Ti–Al surface alloy increased significantly compared with a-Ti substrate due to the nanostructure and enhanced dislocation. Since the e-beam remelted repeatedly, the Ti–Al surface alloy mixed sufficiently with Ti substrate. Moreover, there is no obvious boundary between the alloyed layer and substrate.  相似文献   

2.
不同加钛方法对6063合金细化的研究   总被引:1,自引:1,他引:1  
加钛方式不同,钛含量不同,对铝及其合金的晶粒细化效果不同。对比研究了用电解低钛铝合金、加Al—5Ti中间合金、Al—5Ti—1B中间合金及电解低钛铝合金加Al—B中间合金4种加钛方式及不同钛含量对6063合金的晶粒细化效果。研究结果表明:不同的加钛方式对6063合金均有明显的细化效果,随着钛含量增加,晶粒逐渐变细;钛含量相同时,电解加钛的细化效果优于Al—5Ti中间合金的细化效果;当合金中含有硼时,钛含量相同时,电解加钛加Al—B中间合金的细化效果优于加Al—5Ti—1B的细化效果。  相似文献   

3.
Al-10Ti-xSi alloys (x=0∼6wt.%) have been mechanically alloyed under Ar atmosphere using an attritor and the alloying process has been investigated. From Al-10Ti composite powders, supersaturated Al(Ti) powders were obtained after mechanical alloying. In the ternary mixture, fine Si particles were observed to be distributed in the Al(Ti) matrix due to both the negligible solid solubility of Si in the Al matrix and the weaker chemical interaction of Si with Al, as compared with Ti. The sealed compacts were hot extruded to full density at 450°C with an extrusion ratio of 12:1. The microstructures and creep properties of the hot extruded alloys were examined. During consolidation, Si particles were dissolved in Al3Ti up to 4 wt.% Si to form the (Al(Si))3Ti phase, and the Ti7Al5Si12 phase was formed beyond the solubility limit of Si in Al3Ti. The transition from the Coble creep mechanism at low stresses and temperatures to dislocation one at high stresses and temperatures was observed. The stress and temperature of the transition from diffusional to dislocation creep became higher as Si concentration increased. This was due to an enhancement of Al3Ti particle strength with increasing Si content as a result of Si incorporation. Thus, the addition of Si enhances the creep resistance of the MA Al-10Ti alloy.  相似文献   

4.
采用等温液相退火和塑性变形工艺制备含不同尺寸Al3Ti和TiB2粒子的Al-5Ti-B(质量分数,%)中间合金。结果表明:随着中间合金中Al3Ti和TiB2粒子尺寸的减小,合金的晶粒细化作用得到增强,但不适当地减小Al3Ti和TiB2的粒径可能导致这些颗粒作用减弱和结块,从而降低合金的晶粒细化效率。  相似文献   

5.
Al + TiC laser cladding coatings were prepared on Ti-6Al-4V alloy by CO2 laser cladding technique. The microstructure, micro-hardness and phase constitutes of the laser cladding layer were investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and microsclermeter. The results indicated that the laser cladding layer solidified into the fine microstructure rapidly, and TiC hard phase was dispersived in the cladding layer. When the mass percent of TiC was 40%, the micro-hardness (1100HV0.2-1250HV0.2) of Al + TiC cladding layer was 3 times more than that of the Ti-6Al-4V alloy substrate (350-370HV0.2). The cladding layer mainly consisted of α-Ti (Al), β-Al (Ti), Ti3Al, TiAl, Al3Ti and TiC phase. There phases were beneficial to improve the hardness and wear resistance of the cladding layer.  相似文献   

6.
New Al4C3-containing Al-Ti-C master alloys (Al-0.6Ti-1C and Al-1Ti-1C) were developed by introducing Ti element into Al-C melt using melt reaction method, in which most of the TiC particles distribute around Al4C3 particles. It is believed that most of the C firstly reacts with Al melt and form Al4C3 particles by the reaction Al(l)+C(s)→Al4C3(s), and after adding Ti into the Al-C melt, the size of Al4C3 particles is decreased and the distribution of Al4C3 is improved through the reaction Ti(solute)+Al4C3(s)→TiC(s)+Al(l). With the addition of 1% Al-1Ti-1C master alloy, the average grain size of AZ31 is reduced sharply from 850 μm to 200 μm, and the grain morphology of α-Mg transits from a fully-developed equiaxed dendritic structure to a petal-like shape. Al-C-O-Mn-Fe compounds are proposed to be potent nucleating substrates for primary Mg. Appropriate addition of Ti is believed to increase the grain refinement efficiency of Al4C3-containing Al-Ti-C master alloys in AZ31 alloy.  相似文献   

7.
采用机械合金化制备的 Mg?Al?Ti?B 合金,其微观组织的均匀性较差,而且致密性也不好。为了提高Mg?Al?Ti?B合金微观组织的均匀性和致密性,使其力学性能得到改善,制备了铸态Mg?9Al?6Ti合金。采用金相显微镜、扫描电镜、X射线衍射与力学性能测试等手段,研究B2O3对Mg?9Al?6Ti (质量分数,%)合金的显微组织与力学性能的影响。结果表明:添加3%的B2O3使Mg?Al?Ti?B合金的晶粒尺寸减小到12μm,Ti颗粒完全消失,沉淀相Mg17Al12减少,而TiAl3相增多。由于新沉淀相MgB6和Ti3B4的析出,Mg?9Al?6Ti?3B2O3合金的结构变得均匀,平均硬度为HV77.1,平均抗拉强度、屈服强度和伸长率分别是171.2 MPa、113.5 MPa和5.2%。  相似文献   

8.
Microstructure and synthesis mechanism of Al-Ti-C-Sr master alloy   总被引:1,自引:0,他引:1  
Al-5Ti-0.5C-8Sr (mass fraction,%) master alloy was prepared using a melt reaction method.The microstructure and synthetic process of the master alloy were investigated by optical microscopy,X-ray diffraction,scanning electron microscopy and X-ray energy-dispersive spectrum.The results show that the master alloy is composed of α(Al),TiAl3,TiC,Al4Sr and Al-Ti-Sr phases.The synthesis mechanisms of the master alloy are as follows:TiAl3 is formed through the reaction between K2TiF6 and Al melt at 850 ℃;when the melt was heated up to 1 200?1 300 ℃,TiC was formed through the reaction:Ti+C(s)=TiC(s);Al4Sr was formed through the binary uniform reaction when Sr was added into the melt;after the following solidification process in the peritectic reaction:L(Al,Sr)+α(TiAl3)→β(Al-Ti-Sr),the enwrapped structure was formed with the outer layer of Al-Ti-Sr phase and the internal layer of TiAl3 phase.  相似文献   

9.
The microstructure evolution and mechanical properties of Mg?15.3Gd?1Zn alloys with different Al contents (0, 0.4, 0.7 and 1.0 wt.%) were investigated. Microstructural analysis indicates that the addition of 0.4 wt.% Al facilitates the formation of 18R-LPSO phase (Mg12Gd(Al, Zn)) in the Mg?Gd?Zn alloy. The contents of Al11Gd3 and Al2Gd increase with the increase of Al content, while the content of (Mg, Zn)3Gd decreases. After homogenization treatment, (Mg, Zn)3Gd, 18R-LPSO and some Al11Gd3 phases are transformed into the high-temperature stable 14H-LPSO phases. The particulate Al?Gd phases can stimulate the nucleation of dynamic recrystallization by the particle simulated nucleation (PSN) mechanism. The tensile strength of the as-rolled alloys is improved remarkably due to the grain refinement and the fiber-like reinforcement of LPSO phase. The precipitation of the β′ phase in the peak-aged alloys can significantly improve the strength. The peak-aged alloy containing 0.4 wt.% Al achieves excellent mechanical properties and the UTS, YS and elongation are 458 MPa, 375 MPa and 6.2%, respectively.  相似文献   

10.
本文以纯钛板与纯铝板为原料,通过爆炸复合法制备钛/铝/钛层状复合材料,之后采用热处理以及热压工艺对钛/铝/钛层状复合材料进行进一步处理。研究结果表明:复合板界面主要由波状界面和平直状界面构成,铝元素与钛元素在界面上发生了互扩散,界面结合性能优良,可以承受后续较大的二次塑性变形;热处理后的复合板界面发生明显扩散,在热处理25 h后热压2.5 h后铝层完全反应,扩散反应层主要由TiAl3相以及Ti2Al5相构成。  相似文献   

11.
Al–Ti–C master alloys have a great potential as efficient grain refiners for aluminium and its alloys. In the present work, the Al–5Ti–C, Al–TiC and Al–5Ti master alloys have been successfully prepared by a method of liquid solidification reactions. While the Al–5Ti–C master alloy consists of some strip- or needle-like TiAl3, and in addition to TiC particles in the Al matrix, the Al–TiC master alloy revealed the presence of only TiC particles, and the Al–5Ti master alloy consists of only some blocky TiAl3 particles. A united refinement technology by Al–5Ti–C+Al–5Ti and Al–TiC+Al–5Ti master alloys was put forward in this paper. The blocky TiAl3 particles in Al–5Ti master alloy can not only improve the grain refinement efficiency of Al–5Ti–C and Al–TiC master alloys but also reduce the consumption because the blocky TiAl3 particles improve the grain refinement efficiency of TiC particles in Al–5Ti–C and Al–TiC master alloys.  相似文献   

12.
A study on the effect of different grain refiners and addition technique in Al-7%Si alloys was carried out. The results show that the Al3Ti phase reacts with silicon (Si) in the molten alloy forming a new compound (Al,Si)3Ti. This reaction is independent of the grain refiner addition technique. The temperature of the liquid metal causes a significant change in the Al3Ti phase morphology, which precipitates in the form of platelets at 750°C and in a dendritic form at 950°C. It has also been observed that while (Al,Si)3Ti phase platelets precipitate within the α-aluminum dendrites, the TiB2 or AlB2 particles are rejected into the surrounding interdendritic regions. The results also reveal that addition of 100ppm B will reduce the initial grain size by ~ 85%, which is more than the reduction obtained with the addition of 0.2%Ti in the form of Al-10%Ti (about 65%).  相似文献   

13.
Thermal spray assisted transient liquid phase (TLP) bonding of Ti−6Al−4V to Al2024 alloys was investigated, where the interlayer was 80 µm Babbitt thermal spray coat on Al substrate. Thermal spray creates a rough and clean surface which leads to establishing a joint with higher strength. The optimized parameters were bonding temperature of 580 °C and bonding time of 30 and 60 min. Microstructural observation together with XRD patterns confirmed the existence of Al2Cu, Al2CuMg, Cu3Ti, TiAl3, TiAl and Mg2Sn intermetallic compounds formed in Al weld side. On the other hand, Ti3Al, Sn3Ti5 and Ti3Sn intermetallic compounds formed in Ti side. With increasing bonding time from 30 to 60 min, although the interlayer was not completely consumed, the thickness of remained Babbitt interlayer decreased to approximately 15 µm. The study showed that shear strength of the joint reaches the high value of 57 MPa obtained at larger bonding time of 60 min.  相似文献   

14.
Al2O3 and Ti-6Al-4V alloy were brazed using Cu + TiB2 composite filler, which manufactured by mechanical milling of Cu and TiB2 powders. Typical interface microstructure of joint was Al2O3/Ti4(Cu,Al)2O/Ti2Cu + Ti3Al + Ti2(Cu,Al)/Ti2(Cu,Al) + AlCu2Ti/Ti2Cu + AlCu2Ti + Ti3Al + Ti2(Cu,Al) + TiB/Ti(s.s) + Ti2Cu/Ti-6Al-4V alloy. Based on temperature- and time-dependent compositional change, the formation of intermetallics in joint was basically divided into four stages: formation of interfacial Ti4(Cu,Al)2O in Al2O3 side, formation of Ti2Cu, Ti3Al, TiB, Ti2Cu, and AlCu2Ti in layers II and IV, formation of Ti2(Cu,Al) and AlCu2Ti in layer III, formation of Ti + Ti2Cu hypereutectoid organization adjacent to Ti-6Al-4V alloy. TiB in situ synthesized in joint not only acted as low thermal expansion coefficient reinforcement to improve the mechanical properties at room temperature, but also as skeleton ceramic of joint to increase high temperature mechanical properties of Al2O3/Ti-6Al-4V alloy joint increasing. When the joint containing 30 vol.% TiB brazed at 930 °C and 10 min of holding time, the maximum room temperature shear strength of joint was 96.76 MPa, and the high temperature shear strength of joint was 115.16 MPa at 800 °C.  相似文献   

15.
采用Ni-Ti复合箔片作为中间层,在990 ℃、低连接压力(0.1 MPa)下,通过瞬时液相(TLP)扩散连接制备了Ti3Al/Ti2AlNb异种合金接头。分析了保温时间(10~90 min)对Ti3Al/Ti2AlNb接头微观结构及力学性能的影响,并研究了TLP扩散连接接头的界面演变和形成机制。结果表明,Ti3Al/Ti2AlNb接头具有典型的“Ti3Al | Al0.5Nb0.5Ti3 | 残余 Ni | NiTi | NiTi2 | 残余 Ti | Al0.5Nb0.5Ti3 | Ti2AlNb”多层梯度结构。随着保温时间的延长,接头的抗剪切强度先增大后减小,当保温时间达到60 min时,Ti3Al/Ti2AlNb接头的抗剪切强度最大,达到167±12 MPa。另外,接头的断裂主要发生在Ti2AlNb/Ti附近的NiTi2层,并向Ti层延伸,呈现出脆性断裂的特征。  相似文献   

16.
This paper reports the formation of an ordered B2 phase in the alloy Ti–25Al–25Zr. The structure of the B2 phase has been confirmed by X-ray diffraction and transmission electron microscopic techniques. The B2 phase transforms to two phases (Ti2AlZr and Al3Zr5) and an orthorhombic phase during aging and mechanical polishing, respectively. The instability of B2 phase has been attributed to higher heat of formation of the B2 phase than that of Ti2AlZr (D019) structure.  相似文献   

17.
The effects of trace Sc, Zr, and Ti on the microstructure and hardness of Al alloys with high Mg content (Al-6Mg, Al-8Mg, and Al-10Mg) were studied by optical microscope, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brinell hardness. The grain size of the as-cast alloys was refined by the addition of Sc and Zr, and it was further refined by the addition of Ti. With the same contents of Sc, Zr, and Ti, an increase in Mg content was beneficial to the refinement due to the solution of Mg into α-Al. The refined microstructures of the as-cast alloys were favorable for Brinell hardness. Addition of Sc, Zr, and Ti to the Al-10Mg alloy results in the improvement of peak hardness and it is about 45% higher than that of the Al-10Mg alloy, which is due to fine precipitations of Al3(Sc1−x Zr x ), Al3(Sc1−x Ti x ), and Al3(Sc1−xy Zr x Ti y ).  相似文献   

18.
The effect of aluminium contents and bias voltage on the microstructure of cathodic arc evaporated Ti1 − xAlxN coatings was investigated with the aid of X-ray diffraction experiments and transmission electron microscopy. The coatings were deposited from mixed Ti-Al targets with different Ti:Al ratios (60:40, 50:50, 40:60 and 33:67) at bias voltages ranging between − 20 V and − 120 V. The microstructure of the coatings was described in terms of the phase composition, crystallite size and residual stress and related to the indentation hardness. The microstructure features were found to be related to the uniformity of the local distribution of Ti and Al in (Ti,Al)N, which was controlled, for a certain overall chemical composition of the coatings, by the bias voltage. The consequences of large local fluctuations of the Ti and Al concentrations in Ti1 − xAlxN that occurred at higher bias voltages were the phase segregation, which was indicated through the formation of the fcc-(Ti,Al)N/fcc-AlN nanocomposites and the increase of the compressive residual stress in the face-centred cubic (Ti,Al)N. Concurrently, the increasing bias voltage contributed significantly to the reduction of the crystallite size. Higher residual stress and smaller crystallite size increased the hardness of the coatings. The overall chemical composition of the coatings influenced mainly their phase composition. The high concentration of Al in (Ti,Al)N led to the formation of wurtzitic AlN in the coatings.  相似文献   

19.
Abstract

Dissimilar alloys of Ti–6Al–4V and 5A06 Al were butt joined by Al based fillers using a novel TIG welding process, referred to as keyhole arc welding–brazing. The flow behaviour of weld pool was introduced, which was characterised by the formation of a keyhole under the tungsten electrode. It was found that porosity tended to be produced in the middle of the fusion line, while adding elements prevented its formation. At brazing interface, interfacial reaction at root face was enhanced, and a uniform serrated layer, identified as TiAl3, was obtained by pure Al fillers. When Al–Cu–La fillers were used, block Ti2Al20La phases appeared at the interface between the TiAl3 layer and the brazed seam. Compared to joints brazed by pure Al fillers, the formation of Ti2Al20La reduced the hardness of the interfacial layer by more than half, while Al2Cu increased that of the brazed seam by ~50%. The tensile strength of Ti/Al joints reached 270 MPa.  相似文献   

20.
The microstructural evolution and grain refining efficiency of sub-rapidly solidified (SRS) Al-10Ti master alloy has been studied. The results show that the mean size of Al3Ti particles in the SRS Al-10Ti master alloy decreased significantly and the morphology changed from strip-like to blocky and short rod-like compared with the conventional Al-10Ti master alloy. Grain refining experiments show that the SRS Al-10Ti master alloy is more effective than the conventional master alloy for refining Al-7Si alloy. The conversion rate of columnar to fine equiaxed grain structure in the Al-7Si alloy was promoted by the addition of SRS master alloy, and the microhardness of Al-7Si alloy increased. The mechanisms of grain refinement of aluminum by inoculation with improved Al-10Ti master alloy are discussed based on the solute theory. The decrease in size, increase in quantity, and change in morphology of Al3Ti particles are considered as the reasons for the improvement of microstructure and microhardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号