首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the DME spray characteristics about varied ambient pressure and fuel injection pressure using the common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system and fuel cooling system were used since DME has compressibility and vaporization at atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray was analyzed for spray shape, penetration length, and spray angle at the six nozzle holes. There are two types of injectors: 0.166 mm diameter and 0.250 mm diameter. The ambient pressure, which was based on gage pressure, was 0, 2.5, and 5 MPa. The fuel injection pressure was varied by 5 MPa from 35 to 70 MPa. By comparing with the common injector, using the converted injector it was shown that the DME injection quantity was increased 127% but it didn??t have the same low heating value. Both the common and converted injectors had symmetric spray shapes. In case of converted injector, there were asymmetrical spray shapes until 1.2 ms, but after 1.2 ms the spray shapes were symmetric. Also, the converted injector had shorter penetration length and wider spray angle than the common injector.  相似文献   

2.
The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot,but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently.In this paper,a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation.Linear model of the improved high pressure common-rail system(HPCRS)including injector,the pipe connecting common-rail with injector and the hydraulic filter is built.Fuel pressure fluctuation at injector inlet,on which frequency domain analysis is conducted through fast Fourier transformation,is acquired at different target pressure and different damping hole diameter experimentally.The linear model is validated and can predict the natural frequencies of the system.Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model,and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists.Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally,and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter.The amplitude of main injection fuel mass deviation can be reduced by 73%at most under pilot-main injection mode,and the amplitude of post injection fuel mass deviation can be reduced by 92%at most under main-post injection mode.Fuel mass of a single injection increases with the increasing of the damping hole diameter.The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.  相似文献   

3.
为了检测高压共轨喷油器的工作性能,改善汽车尾气的排放质量,对高压共轨喷油器的动作原理及其检测波形进行了分析,并对喷油器的喷油量进行了计算。采用PLC技术,利用PWM方法,设计了一种喷油器检测电路及其测试平台,可以检测各类型号的高压共轨喷油器在怠速及全油门状态下的喷油状况,对其喷油质量给出判定,该平台也可进行喷油嘴驱动电路的优化研究。  相似文献   

4.
The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector’s needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector’s needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle’s behavior with an accelerometer and injection rate measurement employing Bosch’s method was conducted. The experimental results show that the spray tip penetrations of piezodriven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.  相似文献   

5.
Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.  相似文献   

6.
甲醇喷油器作为高压共轨喷射系统的核心部件,其性能优劣对甲醇发动机的各项特性有重要影响。通过对甲醇喷油器主要结构进行数学建模,得出影响液力响应的结构参数。利用AVL Hydsim软件对甲醇喷油器建立了仿真计算模型,结果表明:进油孔孔径、柱塞直径、针阀直径、柱塞弹簧预紧力是影响喷油器液力响应的4个关键因素。由此,选择合理范围的结构参数进行正交试验,得出各个参数对喷油器液力响应各个阶段的影响程度,其中进油孔孔径对液力响应4个动态指标影响均极为显著,由此优选出最佳参数。优化方案对提高液力响应有明显的效果。  相似文献   

7.
喷油器是柴油机燃油供给系统中实现燃油喷射的重要部件,然而在其工作中,针阀常与针阀体产发生碰撞,产生很大应力,针阀体工作寿命相当有限。以某款柴油机的喷油器为例,在CATIA中建立喷油器的三维模型,导入Hypermesh中进行模型的简化和网格的划分,利用Hypermesh和ABAQUS的接口,在ABAQUS的显式动力学有限元模块进行瞬态力学分析,模拟出喷油器中针阀与针阀体的碰撞过程,发现与应力波理论推导出的经验公式计算出的应力值基本接近。采用有限元方法对喷油器进行力学分析,有利于喷油器的改进设计。  相似文献   

8.
The characteristics of a butane spray from pintle-type injector were studied by droplet velocity and diameter measurements and high speed photography. The accumulator type injector operated off a common rail fuel supply system operated at 13 MPa, and was controlled by a high-speed solenoid valve. Injection was carried out in a chamber at ambient temperature and at the pressure above (0.37 MPa) and below (0.15 MPa) the fuel vapor pressure. Two component phase/Doppler particle analyzer and traverser were used to obtain the droplet diameter and the velocity at numerous locations in the spray. The entire injection event was analyzed as a time-average and also subdivided into three temporal intervals. A, B, and C. The high-speed photographs showed a narrower cone angle during the quasi-steady spray period at the 0.37 MPa chamber pressure compared to the 0.15 MPa case.  相似文献   

9.
针阀动力学行为是影响GDI(汽油直接喷射式)喷油器工作稳定性和可靠性的关键因素。为了揭示不同参数对针阀动力学特性的影响机理,以某款GDI多孔喷油器为对象,依据针阀的受力特点建立了针阀动力学模型和GDI喷油器AMESim工作过程仿真模型,仿真分析了阀座锥角、阀座与钢球的接触方式、阀针运动质量等参数对针阀动力学特性的影响规律。结果表明:适当减小阀座锥角、增大阀座与钢球的接触面积、减小针阀运动质量可有效抑制开启或落座过程中针阀的振荡幅度。根据仿真分析结果对GDI喷油器的结构进行了综合改进,结果表明,结构改进后,GDI喷油器针阀的动力学特性得到显著改善。  相似文献   

10.
In micro-turbojet engines with less than 350 kW power, it is not easy to find a suitable fuel injector with good spray quality. However, the rotating fuel injection system can potentially provide high atomization quality without the high-pressure fuel pump through the centrifugal forces of the engine shaft. With this motivation, a very small rotating fuel injector with 40 mm diameter is designed for the micro-turbo jet engine. It is directly linked to a high-speed rotational spindle capable of a speed up to 100,000 rpm. The droplet size, velocity, and spray distribution from the PDPA (Phase Doppler Particle Analyzer) system are measured. The spray is also visualized by a high-speed camera. The test results show that the length of liquid column from injection orifice is controlled by the rotational speeds and that SMD (Sauter Mean Diameter) is decreased with increasing rotational speeds. At a rotational speed of 73.3 m/s (35,000 rpm), SMD is lower than 60 μm at the entirety of the measuring space in the case of Type 2 (injection orifice diameter of 1.5 mm) and Type 3 (injection orifice diameter of 2.2 mm). Therefore, conceptually, it is possible to apply this small rotating fuel injection system to the micro-turbojet engine combustor.  相似文献   

11.
A mathematical model of gaseous fuel solenoid injector for spark ignition engine has been realized and validated through experimental data. The gas injector was studied with particular reference to the complex needle motion during the opening and closing phases, which strongly affects the amount of fuel injected. As is known, in fact, when the injector nozzle is widely open, the mass flow depends only on the fluid pressure and temperature upstream the injector: this allows one to control the injected fuel mass acting on the “injection time” (the period during which the injector solenoid is energized). This makes the correlation between the injected fuel mass and the injection time linear, except for the lower injection times, where we experimentally observed strong nonlinearities. These nonlinearities arise by the injector outflow area variation caused by the needle bounces due to impacts during the opening and closing transients [1] and may seriously compromise the mixture quality control, thus increasing both fuel consumption and pollutant emissions, above all because the S.I. catalytic conversion system has a very low efficiency for non-stoichiometric mixtures. Moreover, in recent works [2, 3] we tested the simultaneous combustion of a gaseous fuel (compressed natural gas, CNG, or liquefied petroleum gas, LPG) and gasoline in a spark ignition engine obtaining great improvement both in engine efficiency and pollutant emissions with respect to pure gasoline operation mode; this third operating mode of bi-fuel engines, called “double fuel” combustion, requires small amounts of gaseous fuel, hence forcing the injectors to work in the non-monotonic zone of the injected mass diagram, where the control on air-fuel ratio is poor. Starting from these considerations we investigated the fuel injector dynamics with the aim to improve its performance in the low injection times range. The first part of this paper deals with the realization of a mathematical model for the prediction of both the needle motion and the injected mass for choked flow condition, while the second part presents the model calibration and validation, performed by means of experimental data obtained on the engine test bed of the internal combustion engine laboratory of the University of Palermo.  相似文献   

12.
Effects of injector nozzle geometry and operating pressure conditions such as opening pressure, ambient pressure, and injection pressure on the transient fuel spray behavior have been examined by experiments. In order to clarify the effect of internal flow inside nozzle on the external spray, flow details inside model nozzle and real nozzle were also investigated both experimentally and numerically. For the effect of injection pressures, droplet sizes and velocities were obtained at maximum line pressure of 21 MPa and 105 MPa. Droplet sizes produced from the round inlet nozzle were larger than those from the sharp inlet nozzle and the spray angle of the round inlet nozzle was narrower than that from the sharp inlet nozzle. With the increase of opening pressure, spray tip penetration and spray angle were increased at both lower ambient pressure and higher ambient pressure. The velocity and size profiles maintained similarity despite of the substantial change in injection pressure, however, the increased injection pressure produced a higher percentage of droplet that are likely to breakup.  相似文献   

13.
Aimed at the technical problems such as the influence of granular medium on spring pre-tightening force sealing, a new ball valve based on elastic ring valve seat structure is studied. The spring plate type valve seat structure is designed to cooperate with the ball core for sealing, and the blade spring coil is used to cooperate with the ball core for sealing in the spring plate type valve seat structure. Wherein the supporting back ring supports the blade leaf spring on the outer side to enhance and protect the role of the blade spring coil. The design without the spring cavity avoids the problem of sealing failure caused by medium entering into the spring cavity and affecting the compression spring, and avoids the situation that the valve seat can be sealed with the ball core by pre-tightening the compression spring, thus avoiding the problem of sealing failure caused by the valve seat sticking on the valve body. The mechanical and flow characteristics are studied and analyzed by the ball valve characteristic test system. The stem torque, unbalance torque, flow characteristics and flow coefficient variation at different nominal diameters are analyzed. The seal allowable squeeze stress and seal surface pressure are analyzed, and the seal is stable and reliable with the seal pressure meeting the seal design criteria. The fluid dynamics simulation analyzes the velocity, pressure and flow traces of the fluid flowing through the ball valve under three opening degrees: fully closed, half open and fully open, the maximum velocity-pressure and opening degree variation curves of the inlet and outlet, the maximum velocity-pressure and opening degree variation curves of the inlet and outlet under different nominal diameters and the flow resistance coefficient curves. Static strength analysis was done for the ball core and spring plate seat structure to obtain the stress, displacement, strain and safety factor. The fatigue strength of the ball spool and spring-loaded plate seat structure was analyzed, and the total number of lives (cycles) and load factors were obtained, and the results show that the fatigue strength of the ball spool and spring-loaded plate seat structure is safe and the fatigue strength meets the requirements. Ball valve pressure test, low pressure sealing test and high pressure sealing test, valve body strength and ball valve sealing performance all meet the requirements.  相似文献   

14.
A mathematical model for the prediction of the mass injected by a gaseous fuel solenoid injector for spark ignition (SI) engines has been realized and validated through experimental data by the authors in a recent work [1]. The gas injector has been studied with particular reference to the complex needle motion during the opening and closing phases. Such motion may significantly affect the amount of injected fuel. When the injector nozzle is fully open, the mass flow depends only on the upstream fluid pressure and temperature. This phenomenon creates a linear relationship between the injected fuel mass and the injection time (i.e. the duration of the injection pulse), thus enabling efficient control of the injected fuel mass by simply acting on the injection time. However, a part of the injector flow chart characterized by strong nonlinearities has been experimentally observed by the authors [1]. Such nonlinearities may seriously compromise the air-fuel mixture quality control and thus increase both fuel consumption and pollutant emissions (SI engine catalytic conversion systems have very low efficiency for non-stoichiometric mixtures). These nonlinearities arise by the injector outflow area variation caused by needle impacts and bounces during the transient phenomena, which occur in the opening and closing phases of the injector. In this work, the mathematical model previously developed by the authors has been employed to study and optimize two appropriate injection strategies to linearize the injector flow chart to the greatest extent. The first strategy relies on injection pulse interruption and has been originally developed by the authors, whereas the second strategy is known in the automotive engine industry as the peak and hold injection. Both injection strategies have been optimized through minimum injection energy considerations and have been compared in terms of linearization effectiveness. Efficient linearization of the injector flow chart has been achieved with both injection strategies, and a similar increase in injector operating range has been observed. The main advantage of the pulse interruption strategy lies on its ease of implementation on existing injection systems because it only requires a simple engine electronic control unit software update. Meanwhile, the peak and hold strategy reveals a substantial lack of robustness and requires expressly designed injectors and electronic components to perform the necessary voltage commutation.  相似文献   

15.
The mass flow rate from each injector nozzle hole of a diesel engine influences the distribution, atomization, and combustion of fuel in the chamber. Thus affecting the power, the fuel economy, and the emission quality of the diesel engine. A spray momentum flux test bench was built and used to measure the injection rate from each nozzle hole of a multi-hole nozzle in this study. Selected force sensors used for data acquisition were one of the integral parts of the set-up. The influence of the force sensors’ installed position (location in the set-up) on measured results, were analyzed and the optimum position that ensures independence of the results, determined. Additionally, the effects of injection pressure, injection pulse width and injection hole diameter on the injection characteristics were also investigated. Furthermore, in this research, the reliability and robustness of Strain sensor and Piezoelectric sensors were analyzed with regards to their response. The analysis showed that, strain sensors have weak dynamic response characteristic compared to piezoelectric sensors also, the measured result obtained from strain sensors fluctuated greatly. Piezoelectric force sensor gave a more reliable and stable measurement, comparatively. The accuracy of the results were affected by the installation position of the sensors. A distance of 16 mm (between nozzle hole exit and sensor surface) was determined to be adequate for the acquisition of reliable experimental data. As the injection pressure gets higher (during injection), the rate of mass flow increased, the average cycle-to-cycle variation coefficient and nozzle-to-nozzle variability coefficient of injection quantity decreased. Hence, improving the consistency of each cycle and the uniformity of each hole. In addition, increasing the injection pulse width decreased the average cycle-to-cycle variation coefficient. Also, nozzle-to-nozzle variability coefficient had minimal or no influence with regards to injection pressure. At 80 MPa, the uniformity of injection from the multi-hole nozzle improved significantly. In summary, the larger the hole diameters, the higher the maximum value of mass flow rate and the fuel injection quantity.  相似文献   

16.
Electronic unit pump (EUP) can satisfy both diesel engine emission legislation and fuel economy by improving injection pressure and numerical control. Fluctuations in cycle fuel injection quantity (CFIQ) of EUP determine the coherence and stability of the EUP fuel injection system. The EUP simulation model is developed in the AMESim environment. The method for the simulation experiment is designed in the MODDE environment using the design of experiments method. The results of the simulation reveal the variation laws of correlation between parameters with interaction or no interaction under overall operating conditions of diesel engines. In addition, the results also show the EUP system is a complex nonlinear system. Under overall operating conditions, all the characteristic parameters, such as fuel supply pressure, cam profile velocity, control valve lift, injector opening pressure, injector needle lift, and injector flow coefficient, have significant correlation with CFIQ. The interacting first-order factors exhibit the most significant correlation with CFIQ. The self-interacting second-order factors have significant secondary correlation with CFIQ.  相似文献   

17.
防爆柴油机在高瓦斯、低通风效率的工作环境下具有较强的适应能力,是工业生产中重要的内燃机设备。根据喷油动量方程建立油腔喷射模型,引入喷油效率参数,通过试验方法得出不同喷嘴孔与进油口间距下的捕捉率。试验中设定油压范围0.25~0.45 MPa,喷油温度范围60~90 ℃,采用单因素试验法得出临界孔口间距随温度、压力的变化规律。试验结果表明,随着喷油压力或喷油温度的增大,油喷扩散角增大,临界孔口间距减小,油束发散性更为显著,为防爆柴油机的结构优化设计提供了重要依据。  相似文献   

18.
The increase in common rail pressure can lead to increased cavitation inside the injector, resulting in degradation of injector performance and reduced life. The paper investigates the effect of the pressure block structure parameters (initial flow area around the ball valve) on the velocity field, pressure field, fuel gas phase volume fraction and drain rate of the control valve. The relationship between the initial flow area around the ball valve on the cavitation strength and unloading rate inside the valve was revealed. The results show that both the reduction of the flow area around the ball valve and the increase of the cavitation intensity inhibit the rate of oil discharge from the control valve. The reduction of the fuel flow area inhibits the expansion of the low-pressure region (0–1 MPa) within the flow layer, thus limiting the development of cavitation. The reduction of the cavitation area increases the fuel flow rate, however, the increase in flow rate increases the cavitation phenomenon, and these changes form a cycle (Reviewer 5. comment 2). The increase in cavitation inhibits the control valve pressure relief rate more significantly than the decrease in the initial flow area around the ball valve. Based on this, a stepped-pressure block model is proposed. The stepped pressure block model can effectively reduce the cavitation strength near the seal and enhance the oil discharge rate of the control valve. The study can provide a reference for the engineering optimization design of high-pressure common rail injector control valves.  相似文献   

19.
In order to improve the fuel consumption and exhaust emission for gasoline engines,gasoline direct injection (GDI) system is spotlighted to solve these requirements.Thus,many researchers focus on the i...  相似文献   

20.
By targeting at the high-pressure common rail nozzle of diesel engines, we put forward a curved nozzle structure, established six groups of nozzle models with different curvatures. By using the CFD software STAR-CCM+, based on the incompressible fluid volume function (VOF) multiphase flow model, applying the K-Epsilon two-layer turbulence model, combined with the Schnerr-Sauer cavitation model, we investigated the degree of influence of the curved nozzle on the cavitation characteristics in the nozzle hole. Cavitation at the inlet, middle and outlet of nozzles was observed under injection pressure of 50, 100 or 150 MPa. The effects of curvature on cavitation were analyzed in detail according to cavitation volume fraction, cavitation volume content, mass flow, turbulent kinetic energy and velocity coefficient. It was found the curved nozzle can significantly reduce the cavitation degree in the nozzle holes, and the larger nozzle bending led to a smaller cavitation degree in the holes. Meanwhile, the average turbulent kinetic energy increased obviously and the average velocity decreased in both the holes and outlet, but the mass flow did not change much.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号