共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Android系统恶意软件检测的全流程,对比和分析了国内外的研究现状和进展,从样本获取的角度介绍了标准化数据样本的来源及作用,从特征选择的角度阐述了特征选择应遵循的原则;重点从检测方法的角度对比和分析了各种检测方法的优缺点,同时总结和归纳了特征数据集筛选方法以及实验结果评估方法。最后结合实际应用和需求,展望了未来Android恶意软件检测方法的研究和发展方向。 相似文献
2.
Android系统的开放性和第三方应用市场的多样性,使其在取得高市场占有率的同时也带来了巨大的风险,导致Android恶意应用层出不穷并广泛传播,严重威胁了用户的隐私和经济安全. 如何有效检测Android恶意应用受到了研究人员的广泛关注. 根据是否运行应用程序,将现有的恶意应用检测方法分为静态检测和动态检测. 其中,静态检测的效率和代码覆盖率均优于动态检测,Drebin等静态检测工具取得了广泛应用. 为此,系统调研了Android恶意应用静态检测领域的研究进展,并进行了分析和总结. 首先,介绍了Android应用静态特征;然后,根据静态特征的不同,分别对基于权限、应用程序编程接口(application programming interface,API)和操作码等不同静态特征的Android恶意应用检测方法进行了分析,并总结了常用的Android应用数据集和评价Android恶意应用检测性能的常用指标;最后,对Android恶意应用静态检测技术的发展进行了总结和展望,以期为该领域的研究人员提供参考.
相似文献3.
Yanfang Ye Lingwei Chen Shifu Hou William Hardy Xin Li 《Knowledge and Information Systems》2018,54(2):265-285
With computers and the Internet being essential in everyday life, malware poses serious and evolving threats to their security, making the detection of malware of utmost concern. Accordingly, there have been many researches on intelligent malware detection by applying data mining and machine learning techniques. Though great results have been achieved with these methods, most of them are built on shallow learning architectures. Due to its superior ability in feature learning through multilayer deep architecture, deep learning is starting to be leveraged in industrial and academic research for different applications. In this paper, based on the Windows application programming interface calls extracted from the portable executable files, we study how a deep learning architecture can be designed for intelligent malware detection. We propose a heterogeneous deep learning framework composed of an AutoEncoder stacked up with multilayer restricted Boltzmann machines and a layer of associative memory to detect newly unknown malware. The proposed deep learning model performs as a greedy layer-wise training operation for unsupervised feature learning, followed by supervised parameter fine-tuning. Different from the existing works which only made use of the files with class labels (either malicious or benign) during the training phase, we utilize both labeled and unlabeled file samples to pre-train multiple layers in the heterogeneous deep learning framework from bottom to up for feature learning. A comprehensive experimental study on a real and large file collection from Comodo Cloud Security Center is performed to compare various malware detection approaches. Promising experimental results demonstrate that our proposed deep learning framework can further improve the overall performance in malware detection compared with traditional shallow learning methods, deep learning methods with homogeneous framework, and other existing anti-malware scanners. The proposed heterogeneous deep learning framework can also be readily applied to other malware detection tasks. 相似文献
4.
针对Android恶意软件检测中数据不平衡导致检出率低的问题,提出一种基于Bagging-SVM(支持向量机)集成算法的Android恶意软件检测模型。首先,提取AndroidManifest.xml文件中的权限信息、意图信息和组件信息作为特征;然后,提出IG-ReliefF混合筛选算法用于数据集降维,采用bootstrap抽样构造多个平衡数据集;最后,采用平衡数据集训练基于Bagging算法的SVM集成分类器,通过该分类器完成Android恶意软件检测。在分类检测实验中,当良性样本和恶意样本数量平衡时,Bagging-SVM和随机森林算法检出率均高达99.4%;当良性样本和恶意样本的数量比为4:1时,相比随机森林和AdaBoost算法,Bagging-SVM算法在检测精度不降低的条件下,检出率提高了6.6%。实验结果表明所提模型在数据不平衡时仍具有较高的检出率和分类精度,可检测出绝大多数恶意软件。 相似文献
5.
针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法。首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量;然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络;最后,利用生成的深度学习网络对待测安卓应用程序进行检测。实验结果表明,在使用相同测试集的情况下,DeepDroid算法的正确率比支持向量机(SVM)算法高出3.96个百分点,比朴素贝叶斯(Naive Bayes)算法高出12.16个百分点,比K最邻近(KNN)算法高出13.62个百分点。DeepDroid算法结合了安卓应用程序的静态特征和动态特征,采用了动态检测和静态检测相结合的检测方法,弥补了静态检测代码覆盖率不足和动态检测误报率高的缺点,在特征识别的部分采用DBN算法使得网络训练速度得到保证的同时还有很高的检测正确率。 相似文献
6.
7.
Android应用普遍具有比所属类型更多的功能,需要获取更多的权限,过多的权限可能带来一定的安全隐患。针对这类问题,提出一种基于元信息的Android恶意软件检测方法。首先,通过对Android应用程序描述进行LDA主题提取,实现数据降维,使用K-means聚类算法按照功能类型对应用程序分组;然后,对属于同一功能类型的所有应用程序提取其权限信息,以权限特征为研究对象,使用KNN算法进行Android恶意软件的分类检测。实验结果获得94.81%的平均准确率,证明了方法的有效性和高准确率。 相似文献
8.
9.
针对Android平台恶意软件检测需求和Android权限特征冗余的问题,提出一套从权限相关性角度快速检测恶意软件的方案。采用卡方检验计算各权限属性对于分类结果的影响大小,去除冗余权限特征,再对权限属性聚类,提取代表性权限特征,进一步减少冗余。最后利用基于不同权限特征权重的改进朴素贝叶斯算法进行软件分类。在收集的2000个软件样本上进行了实验,恶意软件漏检率为10.33%,总体预测准确率达到88.98%。实验结果表明,该方案利用少量权限特征,能够初步检测Android应用软件是否有恶意倾向,为深入判断分析提供参考依据。 相似文献
10.
为了进一步提高恶意代码识别的准确率和自动化程度,提出一种基于深度学习的Android恶意代码分析与检测方法。首先,提出恶意代码纹理指纹体现恶意代码二进制文件块内容相似性,选取33类恶意代码活动向量空间来反映恶意代码的潜在动态活动。其次,为确保分类准确率的提高,融合上述特征,训练自编码器(AE)和Softmax分类器。通过对不同数据样本进行测试,利用栈式自编码(SAE)模型对Android恶意代码的分类平均准确率可达94.9%,比支持向量机(SVM)高出1.1个百分点。实验结果表明,所提出的方法能够有效提高恶意代码识别精度。 相似文献
11.
基于操作码的检测方式被广泛用于安卓恶意软件检测中,但存在特征提取方法复杂、效率低等问题。针对此类问题,提出一种基于操作码的安卓恶意软件多粒度快速检测方法,其中多粒度指以词袋模型为基础、函数为基本单位提取特征,通过逐级聚合特征获得 APK 多层级信息,通过对数长度表征函数规模;并基于Dalvik指令集中操作码语义上的相似性对其进行压缩映射以提升效率,构建相应分类模型。测试表明所提方法在性能和效率上均有明显优势。 相似文献
12.
基于多级签名匹配算法的Android恶意应用检测* 总被引:1,自引:0,他引:1
针对Android恶意应用泛滥的问题,提出了一种基于恶意应用样本库的多级签名匹配算法来进行Android恶意应用的检测。以MD5哈希算法与反编译生成的smali文件为基础,生成API签名、Method签名、Class签名、APK签名。利用生成的签名信息,从每一类恶意应用样本库中提取出这类恶意行为的共有签名,通过匹配待检测应用的Class签名与已知恶意应用样本库的签名,将待测应用中含有与恶意签名的列为可疑应用,并回溯定位其恶意代码,确定其是否含有恶意行为。在测试中成功的发现可疑应用并定位了恶意代码,证明了本系统的有效性。 相似文献
13.
Android系统由于开源性和可移植性等优点,成为市场占有率最高的移动操作系统。针对Android的各种攻击也层出不穷,面向Android的恶意软件检测已成为近些年移动安全领域非常重要的一个环节。面临的问题包括恶意软件收集困难,异常样本和正常样本比例不平衡。为了有效应对上述问题,提出了Droid-Saf框架,框架中提出了一种挖掘数据隐含特征的数据处理方案;把样本特征包含的隐藏信息当作新的特征;建模时将样本特征融入算法当中,建立动态的松弛变量。应用静态分析方法反编译apk,用改进的svdd单分类器分类,克服了恶意软件检测系统中非正常软件收集困难的不足,降低了异常检测的漏报率和误判率。实验结果验证了该算法的有效性和适用性。 相似文献
14.
Android移动平台中恶意软件变种数量与日俱增,为了能够高效快速地检测出变种样本,提出一种能够根据Apk中字符串以及函数长度分布特征,来生成模糊哈希值的方法,使得同类变种的恶意软件间的哈希值相似。在对变种恶意软件进行检测时,首先利用k-means方法对已知病毒库所产生的模糊哈希值进行聚类,从而简化病毒库。再利用哈密顿距离来计算其与病毒库中各模糊哈希间哈密顿距离。当距离小于阈值,则表示检测到变种。实验结果表明,提出的方法具有检测速度快,抗干扰能力强等特点。 相似文献
15.
《计算机工程与科学》2017,(10):1837-1846
安卓系统的恶意程序数量多且危害大,研究相应的检测方法是当前研究热点。现有方法仅单独提取语法或语义特征,难以准确刻画恶意程序的攻击意图。提出一种混合提取语法和语义特征的检测方法,语义特征为基于类抽象的污点传播路径集合,并结合权限声明和Intent-Action等语法特征,对特征规范化后应用K-means算法训练样本集生成恶意程序家族的特征向量,应用欧氏距离检测未知程序与特征向量的相似度。基于FlowDroid实现原型系统,对400个真实程序的分析结果表明该方法有较高的精确度。 相似文献
16.
Cybersecurity has become a major concern for society, mainly motivated by the increasing number of cyber attacks and the wide range of targeted objectives. Due to the popularity of smartphones and tablets, Android devices are considered an entry point in many attack vectors. Malware applications are among the most used tactics and tools to perpetrate a cyber attack, so it is critical to study new ways of detecting them. In these detection mechanisms, machine learning has been used to build classifiers that are effective in discerning if an application is malware or benignware. However, training such classifiers require big amounts of labelled data which, in this context, consist of categorised malware and benignware Android applications represented by a set of features able to describe their behaviour. For that purpose, in this paper we present OmniDroid, a large and comprehensive dataset of features extracted from 22,000 real malware and goodware samples, aiming to help anti-malware tools creators and researchers when improving, or developing, new mechanisms and tools for Android malware detection. Furthermore, the characteristics of the dataset make it suitable to be used as a benchmark dataset to test classification and clustering algorithms or new representation techniques, among others. The dataset has been released under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License and was built using AndroPyTool, our automated framework for dynamic and static analysis of Android applications. Finally, we test a set of ensemble classifiers over this dataset and propose a malware detection approach based on the fusion of static and dynamic features through the combination of ensemble classifiers. The experimental results show the feasibility and potential usability (for the machine learning, soft computing and cyber security communities) of our automated framework and the publicly available dataset. 相似文献
17.
传统的机器学习算法无法有效地从海量的行为特征中选择出有本质的行为特征来对未知的Android恶意应用进行检测。为了解决这个问题,提出DBNSel,一种基于深度信念网络模型的Android恶意应用检测方法。为了实现该方法,首先通过静态分析方法从Android应用中提取5类不同的属性。其次,建立深度信念网络模型从提取到的属性中进行选择和学习。最后,使用学习到的属性来对未知类型的Android恶意应用进行检测。在实验阶段,使用一个由3 986个Android正常应用和3 986个Android恶意应用组成的数据集来验证DBNSel的有效性。实验结果表明,DBNSel的检测结果要优于其他几种已有的检测方法,并可以达到99.4%的检测准确率。此外,DBNSel具有较低的运行开销,可以适应于更大规模的真实环境下的Android恶意应用检测。 相似文献
18.
由于智能手机使用率持续上升促使移动恶意软件在规模和复杂性方面发展更加迅速。作为免费和开源的系统,目前Android已经超越其他移动平台成为最流行的操作系统,使得针对Android平台的恶意软件数量也显著增加。针对Android平台应用软件安全问题,提出了一种基于多特征协作决策的Android恶意软件检测方法,该方法主要通过对Android 应用程序进行分析、提取特征属性以及根据机器学习模型和分类算法判断其是否为恶意软件。通过实验表明,使用该方法对Android应用软件数据集进行分类后,相比其他分类器或算法分类的结果,其各项评估指标均大幅提高。因此,提出的基于多特征协作决策的方式来对Android恶意软件进行检测的方法可以有效地用于对未知应用的恶意性进行检测,避免恶意应用对用户所造成的损害等。 相似文献
19.
Android 系统正日益面临着恶意软件的攻击威胁。针对支持向量机等传统机器学习方法难以有效进行大样本多分类的恶意软件检测,提出一种基于深度神经网络的Android恶意软件检测与家族分类方法。该方法在全面提取应用组件、Intent Filter、权限、数据流等特征基础上,进行有效的特征选择以降低维度,基于深度神经网络进行面向恶意软件的大样本多分类检测。实验结果表明,该方法能够进行有效检测和分类,良性、恶意二分类精度为 97.73%,家族多分类精度可达到 93.54%,比其他机器学习算法有更好的分类效果。 相似文献
20.
The drastic increase of Android malware has led to strong interest in automating malware analysis. In this paper, to fight against malware variants and zero-day malware, we proposed DroidChain: a method combining static analysis and a behavior chain model. We transform the malware detection problem into more accessible matrix form. Using this method, we propose four kinds of malware models, including privacy leakage, SMS financial charges, malware installation, and privilege escalation. To reduce time complexity, we propose the WxShall-extend algorithm. We had moved the prototype to GitHub and evaluate using 1260 malware samples. Experimental malware detection results demonstrate accuracy, precision, and recall of 73%–93%, 71%–99%, and 42%–92%, respectively. Calculation time accounts for 6.58% of the well-known Warshall algorithm’s expense. Results demonstrate that our method, which can detect four kinds of malware simultaneously, is better than Androguard and Kirin. 相似文献