首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The standard configuration parameters of a Variable compression ratio (VCR) engine neglect to give specific execution with biodiesel from distinctive origins. Alongside, a bunch of exploration of diversified biodiesel over performance and emission analysis, extremely constrained work has been taken out on combustion analysis with VCR. This survey was performed to identify the impact of compression ratio on the combustion characteristics of a diesel engine fueled with Calophyllum inophyllum oil methyl ester (COME) and its blends with diesel. Experiments were conducted at a fixed speed of 1500 RPM, full load and at different compression ratios of 16:1, 17:1 and 18:1. Results, revealed that combustion duration of Calophyllum inophyllum oil was more, while the ignition delay period was shorter than that of diesel.  相似文献   

2.
A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.  相似文献   

3.
This paper describes the effects of injection rate shaping on the combustion, fuel consumption and emission of NOX and soot of a medium duty diesel engine. The focus is on the influence of four different injection rate shapes; square type 1, square type 2, boot and ramp, with a variation of maximum injection pressure and start of injection (SOI). The experiments were carried out on a 1 liter single cylinder research diesel engine equipped with an amplifier-piston common rail injection system, allowing the adjustment of the injection pressure during the injection event and thus injection rate as desired. Two strategies to maintain the injected fuel mass constant were followed. One where rate shaping is applied at constant injection duration with different peak injection pressure and one strategy where rate shaping is applied at a constant peak injection pressure, but with variable injection duration. Injection rate shaping was found to have a large effect on the premixed and diffusion combustion, a significant influence on NOx emissions and depending on the followed strategy, moderate or no influence on soot emission. Only small effects on indicated fuel consumption were found.  相似文献   

4.

The use of biodiesel-blended fuels in diesel engines improves the engine performance parameters and the partial recovery of incomplete combustion products, while also increasing the level of NOx emissions. In this study; biodiesel obtained through the transesterification of waste chicken frying oil was mixed with diesel fuel (90% diesel + 10% biodiesel-B10), and was then used as fuel in a direct injection diesel engine. To reduce the increased NOx emissions caused by the use of B10 fuel, the steam injection method (which is one of the NOx reduction methods) was applied. Steam was injected into the intake manifold at different ratios (5%-S5, 10%-S10 and 15%-S15) and at the time of the induction stroke with the aid of an electronically controlled system. Based on the study results, it was observed that steam injection into the engine using B10 fuel improved both the engine performance and the exhaust emission parameters. It was determined that the S15 steam injection ratio resulted in the best engine performance and emissions parameters. In comparison to STD fuel; the highest increase observed at the S15 steam injection ratio in the effective engine power was 2.2%, while the highest decrease in the specific fuel consumption was 3.4%, the highest increase in the effective efficiency was 3.5%, and the highest decrease in NOx emissions was 13.7%.

  相似文献   

5.
A numerical algorithm is developed to analyze the performance of a Unit-injector (UI) System for a diesel engine. The fundamental theory of the algorithm is based on the continuity equation of fluid dynamics. The loss factors that should be seriously regarded on the continuity equation are the compressibility effect of liquid fuel, the wall friction loss in high-pressure fuel lines of the system, the kinetic energy loss of fuel in the system, and the leakage of fuel out of the control volume. For an evaluation of the developed simulation algorithm, the calculation results are compared with the experimental outputs provided by the Technical Research Center of Doowon Precision Industry Co. (DPICO); the maximum pressure in the plunger chamber (P p ) and total amount of fuel injected into a cylinder per cycle (Qf) at each operational condition. The result shows that the average error rate (%)of P p andQ f are 2.90% and 4.87%, respectively, in the specified operational conditions. Hence, it can be concluded that the analytical simulation algorithm developed in this study can be reasonably applied to the performance prediction of newly designed UI system.  相似文献   

6.
The mass flow rate from each injector nozzle hole of a diesel engine influences the distribution, atomization, and combustion of fuel in the chamber. Thus affecting the power, the fuel economy, and the emission quality of the diesel engine. A spray momentum flux test bench was built and used to measure the injection rate from each nozzle hole of a multi-hole nozzle in this study. Selected force sensors used for data acquisition were one of the integral parts of the set-up. The influence of the force sensors’ installed position (location in the set-up) on measured results, were analyzed and the optimum position that ensures independence of the results, determined. Additionally, the effects of injection pressure, injection pulse width and injection hole diameter on the injection characteristics were also investigated. Furthermore, in this research, the reliability and robustness of Strain sensor and Piezoelectric sensors were analyzed with regards to their response. The analysis showed that, strain sensors have weak dynamic response characteristic compared to piezoelectric sensors also, the measured result obtained from strain sensors fluctuated greatly. Piezoelectric force sensor gave a more reliable and stable measurement, comparatively. The accuracy of the results were affected by the installation position of the sensors. A distance of 16 mm (between nozzle hole exit and sensor surface) was determined to be adequate for the acquisition of reliable experimental data. As the injection pressure gets higher (during injection), the rate of mass flow increased, the average cycle-to-cycle variation coefficient and nozzle-to-nozzle variability coefficient of injection quantity decreased. Hence, improving the consistency of each cycle and the uniformity of each hole. In addition, increasing the injection pulse width decreased the average cycle-to-cycle variation coefficient. Also, nozzle-to-nozzle variability coefficient had minimal or no influence with regards to injection pressure. At 80 MPa, the uniformity of injection from the multi-hole nozzle improved significantly. In summary, the larger the hole diameters, the higher the maximum value of mass flow rate and the fuel injection quantity.  相似文献   

7.
计算流体动力学是解决三维流动问题的有效手段.为解决某型柴油机水流分配器两个出口流量不均匀、出口流动阻力大等问题,提出了改进设计方案.为了验证改进方案是否满足使用要求,建立了三维计算模型,运用CFD前处理软件Gambit划分网格,同时采用标准k-ε模型及SIMPLEC算法,对水流分配器内流场进行了数值模拟分析.通过分析,得到了水流分配器的出口流量以及内流场压力、速度分布特性,找出了改进方案中存在的缺陷,并提出了进一步的改进建议.  相似文献   

8.
喷嘴参数对柴油机喷油规律与性能的影响   总被引:1,自引:0,他引:1  
采用广安博之(Hiroyasu)等准维模型,建立高原运行柴油机工作过程模型;基于一维非定常可压缩理论建立柴油机喷射系统模型,二者耦合计算高原环境喷油器主要结构参数对柴油机实际运行时的喷油规律、燃烧特性和输出性能的影响.台架试验验证了模型的可信性.结果表明:喷孔数和喷孔直径对喷油规律影响最为敏感,喷孔夹角对喷油规律影响微弱.在海拔4 000m时,针对该型柴油机,喷孔面积存在一个最优区间,在该区间给出了功率变化率和喷孔面积的关系式.在燃烧室结构和供油系统参数不变的情况下,当喷孔面积减小为原喷孔的25%~60%时,柴油机功率最大提升8.5%;油耗最大下降8.8%,排气温度下降35℃以上.但是缸内温度明显上升,NOx排放恶化.研究为通过优化喷油器参数改善高原运行柴油机燃烧和性能提供了参考.  相似文献   

9.
Journal of Mechanical Science and Technology - The shape of the combustion chamber plays an important role in the formation of the air-fuel mixture in the chamber, which has a great influence on...  相似文献   

10.
结合企业实际存量资源与柴油机数字化制造需求,构建了柴油机工艺数据库,开发了工艺数据库的原型系统。通过合理数据分类,形成了数据的表示方法与信息定义,实现了数据的集成和资源的有效利用,提升了三维工艺的快速设计能力,为柴油机数字化制造提供了技术保障。  相似文献   

11.
Fuel injection pipe pressures are measured and simulated to study the effect of fuel injection system characteristies on the heat release in a direct injection diesel engine. The fuel injection simulation is based on a linear model. The governing equations are solved by the finite difference method. The measured fuel pipe pressures and the simulated fuel pipe pressures matched well to each other except for the interval when the nozzle is closing. The effects of the fuel pipe length and the nozzle opening pressure are tested. The longer fuel pipe length causes proportional retardation of the fuel injection time. The higher nozzle opening pressure results in increase of the maximum fuel pipe pressure and shorter combustion duration.  相似文献   

12.
NO and Soot trade off is an important challenge for engineers in DI Diesel engines. This paper, introduces multiple injection as a strategy for simultaneous reduction of NO and Soot emissions on a DI diesel engine and also proposes a new concept of variable injection pressure and studies its effect on the engine emissions. To evaluate the benefits of multiple injection strategies and to reveal combustion mechanism, modified three dimensional CFD code KIVA-3V was developed. Results showed that using post injection with appropriate dwell between injection pulses has a great effect on simultaneous reduction of the emissions. Based on computational results, NO reduction formation mechanism in multiple injection strategy is as a single injection with retarded injection timing. It is shown that reduction in soot formation is because of the fact that in split fuel injection the soot, which is producing rich regions at the head of fuel spray, are not replenished by newly injected fuel in post injection pulse. Also increasing injection pressure in post injection will reduce the Soot emission dramatically while NO emission is in control for increase of fuel burning rate in post injection pulse.  相似文献   

13.
This study was to investigate the effects of water induction through the air intake system on the characteristics of combustion and exhaust emissions in an IDI diesel engine. The fuel injection timing was also controlled to investigate a method for the simultaneous reduction of smoke and NOx when water was injected into the combustion chamber. The formation of NOx was significantly suppressed by decreasing the gas peak temperature during the initial combustion process because the water played a role as a heat sink during evaporating in the combustion chamber, while the smoke was slightly increased with increased water amount. Also, NOx emission was significantly decreased with increase in water amount. A simultaneous reduction in smoke and NOx emissions was obtained when water was injected into the combustion chamber by retarding more 2°CA of the fuel injection timing than without water injection.  相似文献   

14.
This study compares the engine operating behavior and regulated gaseous emissions characteristics between the reference European cycles (ESC/ETC) and the worldwide harmonized driving cycles (WHSC/WHTC), which will be applied in the Euro VI heavy-duty diesel engine emissions regulations, for the diesel particulate filter (DPF) equipped Mercedes 12 L diesel engine. The speed and load distribution for two additional representative harmonized cycles which cover a more realistic operating range for a heavy duty engine were established to verify the engine performance over wide range of the cycle work, fuel consumption, and exhaust system temperature as well as engine coolant temperature for repeated validation tests. The WHTC, including an additional test with cold start and transient operation before the hot start, had a substantial influence on the THC, CO, NOx, and PM exhaust emissions levels because of the engine heat-up time and temperature rising characteristics of aftertreatment device. Moreover, the different engine operating conditions of the WHSC influenced on the specific engine performance and gaseous emissions behavior unlike those of the ESC. Finally, the statistical analysis results through repeated tests validated the stationary and transient cycles running at the fully warm-up condition, however, those of WHTC were closely dependent on the inclusion of cold start condition or aggressive acceleration gradient of engine speed and load trace.  相似文献   

15.
郑太雄  潘松  李永福  杨斌 《仪器仪表学报》2015,36(11):2510-2518
由于均质充气压缩点燃(HCCI)发动机缺少直接控制其燃烧的手段,导致HCCI发动机的燃烧正时控制成为HCCI发动机的研究热点。以HCCI发动机进气歧管的温度和压力、燃油当量比、转速以及进气门关闭正时为输入,利用BP神经网络建立用于估计HCCI发动机燃烧正时的黑箱模型。在此模型基础上,以进气门关闭正时为控制量设计了PID控制器,并利用径向基神经网络对其参数进行整定,以实现对燃烧正时的反馈控制。实验结果表明,BP神经网络估计模型对HCCI发动机燃烧正时的估计误差小于0.4(CAD),能实现准确的估计;此外,与传统的PID控制器相比,设计的RBF-PID控制器在超调量、调节时间以及抗干扰性等性能方面均有改善。  相似文献   

16.
Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three- dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.  相似文献   

17.
Zhang  Kun  Huang  Xinyu  He  Sai  Deng  Kangyao  Cui  Yi  Luo  Aiqiang 《Journal of Mechanical Science and Technology》2016,30(6):2827-2838
Journal of Mechanical Science and Technology - For turbocharging engines, the structure of the exhaust system directly affects the flow and energy transfer process of the exhaust gas, which has a...  相似文献   

18.
阐述了发动机起动性能的检测过程及其评价指标,设计了基于虚拟仪器技术的发动机起动性能检测分析系统.该系统能迅速、有效地检测发动机起动过程中的各种参数及相关状态信息,利用软件对这些数据进行计算、分析后,对发动机的起动性能进行了准确、详细地评价,并提供了可视化的评价结果,为发动机的生产、维护、修理提供可靠的依据.  相似文献   

19.
The performance and emission characteristics of a compression ignition engine using mixture of jatropha biodiesel and mineral diesel have been experimentally investigated. It is observed that brake specific fuel consumption increases with higher percentage of biodiesel in the blends. Brake thermal efficiency decreases with the increased percentage of biodiesel in the blends. The maximum efficiency is found to be 29.6% with pure diesel and 21.2% with pure biodiesel. Carbon mono-oxide and hydrocarbon emissions are improved with the addition of biodiesel to diesel. NOx emission is found to be increased with pure biodiesel by 24% compared to mineral diesel.  相似文献   

20.

The influence of variations in engine speed, injection pressure, injection timing, and multiple injection strategies on the combustion and nanoparticle characteristics of a small Direct injection (DI) diesel engine was experimentally investigated. To measure the size distribution and number concentration of particle emissions, a rotating disk thermo-diluter (dilution system), a Condensation particle counter (CPC), and a Scanning mobility particle sizer (SMPS) were used. The injection pressure was changed from 60 MPa to 120 MPa, at an engine speed of 1200 rpm. Injection timing was varied from Before top dead center (BTDC) 40˚ to Top dead center (TDC). To investigate the effect of multiple-injection strategies, the injection strategies consisted of two pulse signals with different dwell time. The experimental results show that the peak combustion pressure and Rate of heat release (ROHR) profile are increased and ignition delay is shortened with the increase of injection pressure from 60 MPa to 120 MPa. The concentration of soot emission for 120 MPa is lower than that of 60 MPa at advanced injection timing from TDC up to BTDC 25°. As the injection timing advances to over BTDC 30°, soot emissions rapidly increase and the high injection pressure case (120 MPa) creates more emissions than the 60 MPa case. The overall trends of total particle number are relatively increased with high injection pressure for single injection conditions. In the advanced injection timings of over BTDC 30°, the trend of total particle number is high for all injection pressures. For multiple injections, the peak combustion pressures and ROHR of multiple-injection strategies are slightly lower compared with those of single-combustion results. Comparing the multiple injection strategies, soot emission is reduced with the retard of second injection timing (-30°+5°). The overall trends of particle size and total number for the 7 mg+3 mg case revealed the lowest level compared with other cases, which is 50% lower than that for the 5 mg+5 mg case. When compared with single injection results, the total particle number and Dp of multiple injection cases were eventually lower.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号