首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Micro machining of high-hardness materials using magnetic abrasive grains   总被引:1,自引:0,他引:1  
If processing speed is increased and processing time is lengthened, a magnetic abrasive system can be used as a tool both for finishing and precise dimensional control of manufactured products at the micro-level, and for mirror face processing. In this study, a micro machining system that can change its high rotational speed was developed. Using micro machining with a high speed magnetic abrasive system, the diameter of difficult-to-cut materials with high hardness could be controlled almost linearly by changing the rotational speed, the frequency of magnetic poles, and the size of diamond particles. By changing machining conditions, the surface roughness of the mirror face level could be obtained. To improve roundness, a higher rotational speed improved processing time and dimensional precision, and 20,000 rpm was the optimum speed in this experiment. Roundness was obtained up to 0.15 μm. Before and after the processing, there was almost no change in the WC(tungsten carbide) and Ni components of the material, and there were no remains of mixed-type particles such as iron and diamond on the material.  相似文献   

2.
利用流体动力学仿真软件CFX对微细磨料喷射加工中,影响加工效果的喷射压力、喷射距离等影响因素进行仿真,模拟出不同参数下磨料微粒的速度、工件表面所受压力的分布规律,并与实验结果进行对比,验证仿真结果的正确性.  相似文献   

3.
4.
This experimental research use the method of abrasive flow machining (AFM) to evaluate the characteristics of various levels of roughness and finishing of the complex shaped micro slits fabricated by wire electrical discharge machining (Wire-EDM). An investigative methodology based on the Taguchi experimental method for the micro slits of biomedicine was developed to determine the parameters of AFM, including abrasive particle size, concentration, extrusion pressure and machining time. The parameters that influenced the machining quality of the micro slits were also analyzed. Furthermore, in the shape precision of the micro slit fabricated by wire-EDM and subsequently fine-finished by AFM was also elucidated using a scanning electron microscope (SEM). The significant machining parameters and the optimal combinations of the machining parameters were identified by ANOVA (analysis of variation) and the S/N (-to-noise) ratio response graph. ANOVA was proposed to obtain the surface finishing and the shape precision in this study.  相似文献   

5.
J.M. Fan  C.Y. Wang  J. Wang 《Wear》2009,266(9-10):968-974
Micro abrasive jet machining (MAJM) is an economical and efficient technology for micro-machining of brittle material like glasses. The erosion of brittle materials by solid micro-particles is a complex process in which material is removed from the target surface by brittle fractures. The rate of material removal is one of the most important quantities for a machining process. Predictive mathematical models for the erosion rates in micro-hole drilling and micro-channel cutting on glasses with an abrasive air jet are developed. A dimensional analysis technique is used to formulate the models as functions of the particle impact parameters, target material properties and the major process parameters that are known to affect the erosion process of brittle materials. The predictive capability of the models is assessed and verified by an experimental investigation covering a range of the common process parameters such as air pressure, abrasive mass flow rate, stand-off distance and machining time (for hole machining) or traverse speed (for channel machining). It shows that model predictions are in good agreement with the experimental results.  相似文献   

6.
磁力研磨法去毛刺的实验研究   总被引:3,自引:0,他引:3  
研制了去毛刺实验装置,用有限元法分析了加工间隙磁场分布,实验结果表明利用磁力研磨法能够去除棱边毛刺,并保持适宜的棱边圆角半径。  相似文献   

7.

Studies on dual micro pattern are not established because of difficulty of its fabrication and deburring technology. In this investigation, a dual micro pattern which consists of a net pattern and a lenticular pattern was fabricated on a cylindrical workpiece by turning process. Magnetic abrasive deburring (MAD) was proposed as a deburring process in this study. Burr height defined by difference of its height and theoretical pattern height was measured as about 1 μm. It is one of the non-traditional machining methods utilizing flexible tool which consists of ferrous particle and abrasive powder. Hence, the aim of this investigation is to remove generated burr on the dual micro pattern. Burr at the dual micro pattern was removed through MAD, and a prediction equation of machined pattern height was derived. A deburring condition was optimized and verified by experiments. As a result, it was confirmed that dual micro pattern which has high shape accuracy was fabricated using MAD.

  相似文献   

8.
Micro machining of an STS 304 bar by magnetic abrasive finishing   总被引:1,自引:0,他引:1  
A magnetic abrasive finishing process is a method of non-traditional precision machining in which the finishing process is completed using magnetic force and magnetic abrasives. In this research, a STS 304 cylindrical workpiece was finished using a magnetic abrasive finishing process at 30,000 rpm, and the roughness, roundness, and changes in the micro-diameter were investigated. The study showed that it is possible to control the micro-diameter and weight of the STS 304 cylindrical workpiece by using a near linear approach. Surface roughness as fine as 0.06 μm (Ry) and roundness as fine as 0.12 μm (LZS) were achievable by using a diamond paste with 1 μm particles. Vibrational motion applied to the workpiece improved the surface roughness. The improvement of the surface roughness was achieved because the vibrational motion effectively removes unevenness in the rotational direction and the direction orthogonal to it. This paper was presented at the 9th Asian International Conference on Fluid Machinery (AICFM9), Jeju, Korea, October 16–19, 2007.recommended for publication in revised form by Associate Editor Dae-Eun Kim Ik-Tae Im received the B.S., M.S. and Ph.D. degrees in Mechanical Engineering from Hanyang University, Seoul, Korea, in 1993, 1995 and 1999, respectively. He has been a visiting scientist at the Department of Materials Engineering, the University of Tokyo, Japan, where he studied on the film growth during the MOCVD process. His research interests include the numerical modeling on the transport phenomena in various materials processing. He is a professor at the Division of Mechanical Design Engineering at Chonbuk National University in Jeonju, Korea. Sang Don Mun received the B.S. degree and M.S. in Precision Mechanical Engineering from Chonbuk National University, Korea, in 1991 and 1993, respectively. He then received the Ph.D. in Precision Mechanical Engineering at the same university in 1997. Dr. Mun is currently a Professor at the Division of Mechanical Design Engineering at Chonbuk National University in Jeonju, Korea. His research interests include magnetic abrasive finishing, tool wear, and micro machining. Seong Mo Oh received his B.S. degree in Mechanical Engineering from Wonkwang University, Korea, in 1992. He then received his M.S. and Ph.D. degrees from Wonkwang in 1994 and 2000 respectively. Dr. Oh is currently a Lecturer at the Division of Mechanical and Automotive Engineering at Wonkwang University in Jeonbuk, Korea. Dr. Oh’s research interests include tribology, functional surfaces, and micromachining.  相似文献   

9.
利用游离磨粒进行超精密加工,可获得高的表面质量和小的加工损伤层,因此被广泛应用,且衍生出较多的加工方法.从去除材料的机理角度,将游离磨粒超精加工分为:通过被加工材料的变形去除材料;通过磨粒与被加工材料的化学反应去除材料;通过加工液与被加工材料的化学反应去除材料.并对各种材料去除机理相对应的典型加工方法进行了综述.  相似文献   

10.
Abrasive waterjet (AWJ) machining is widely applied in the fields of civil and mechanical engineering. In this study, a general and theoretical analysis procedure was presented before computing application. It mainly focused on the kinetic energy model and wear rate model in machining process. Then, the multi-objective cuckoo algorithm was employed for optimization design of AWJ cutting head model, making sure to maximize the output energy and minimize the nozzle erosion rate while keeping the other factors constant. To demonstrate the effectiveness of the above strategy, a practical AWJ machining system was selected for investigation purpose. The proposed model was compared with experimental data for investigating the difference between the initial design and the optimized model. The results showed that the multi-objective cuckoo algorithm has great ability in prediction of outlet power and wear rate. Meanwhile, the optimized parameters were also superior to the original design, compared with experimental test data. The developed model can be used as a systematic approach for prediction in an advanced manufacturing process.  相似文献   

11.
The productivity in abrasive water-jet machining of titanium alloys and heat-resistant alloys is discussed. Empirical formulas for the rate of metal removal as a function of the machining parameters are presented.  相似文献   

12.
Journal of Mechanical Science and Technology - A new machining technique called ultrasonic assisted electrochemical magnetic abrasive machining integrates ultrasonic vibrations, electrochemical...  相似文献   

13.
The trend of miniaturization has been applied to the research of rockets to develop prototypes of micro rockets. In this paper, the development of a web-integrated prototyping system for three-dimensional micro rockets, and the results of combustion tests are discussed. The body of rocket was made of 6061 aluminum cylinder by lathe process. The three-dimensional micro nozzles were fabricated on the same aluminum by using micro endmills with φ100μm~φ500 μm diameter. Two types of micro nozzle were fabricated and compared for performance. The total mass of the rockets was 7.32 g and that of propellant (gun powder) was 0.65 g. The thrust-to-weight ratio was between 1.58 and 1.74, and the flight test with 45 degree launch angle from the ground resulted in 46 m~53 m of horizontal flight distance. In addition, ABS housing for the micro machined rocket was fabricated using Fused Deposition Modeling (FDM). A web-based design, fabrication, and test system for micro nozzles was proposed to integrate the distributed hardware resources. Test data was sent to the designer via the same web server for the faster feedback to the rocket designer.  相似文献   

14.
A consistent approach to the design of abrasive machining operations is established. Its problems are noted, along with potential means of resolution.  相似文献   

15.
The abrasive water jet machining process, a material removal process, uses a high velocity jet of water and an abrasive particle mixture. The estimation of appropriate values of the process parameters is an essential step toward an effective process performance. This has led to the development of numerous mathematical and empirical models. However, the complexity of the process confines the use of these models for limited operating conditions; e.g., some of these models are valid for special material combinations while others are based on the selection of only the most critical variables such as pump pressure, traverse rate, abrasive mass flow rate and others that affect the process. Furthermore, these models may not be generalized to other operating conditions. In this respect, a neural network approach has been proposed in this paper. Two neural network approaches, backpropagation and radial basis function networks, are proposed. The results from these two neural network approaches are compared with that from the linear and non-linear regression models. The neural networks provide a better estimation of the parameters for the abrasive water jet machining process.  相似文献   

16.
Due to the occurrences of debris, the ability of micro-EDM to produce precise dimension is degraded, hence positioning display indicator of micro-EDM machine is not accurately measure the real dimension. Therefore, imprecise workpiece dimension is happen. In order to overcome this problem, in this paper, the use of discharge pulse counting methods to correct this error is introduced. The dimension error from micro-EDM processes by using discharge pulse counting method is much smaller than when using the positioning display indicator of micro-EDM machine. Hence, by using discharge pulse counting method, high precision machining can be achieved.  相似文献   

17.
This study performs experimental investigation into the application of abrasive jet polishing (AJP) to the surface finishing of electrical-discharge-machined SKD61 mold steel workpieces. The results indicate that the AJP processing conditions which optimize the surface quality of the SKD61 workpiece when polishing using #2000SiC abrasives are as follows: an abrasive material to additive ratio of 1:2, an impact angle of 30°, a gas pressure of 4 kg/cm2 (0.4 MPa), a nozzle-to-workpiece height of 10 mm, a platform rotational velocity of 200 rpm, and a platform travel speed of 150 mm/s. Under these processing conditions, a polishing time of 20 min is sufficient to reduce the surface roughness from an initial value of Ra?=?1.7 μm to a final value of Ra?=?0.27 μm, corresponding to an improvement of 84.12%. The experimental results demonstrate that the maximum attainable improvement in the surface quality of the polished workpiece is limited by a surface-hardening effect caused by the ball-impact phenomenon and the embedment of #2000SiC fragments in the workpiece surface.  相似文献   

18.
Free abrasive wire saw machining of ceramics   总被引:1,自引:1,他引:0  
Currently, many kinds of ceramics are used in advanced industrial fields due to their superior mechanical properties, such as thermal, wear, corrosion resistance, and lightweight features. Wire saw machining ceramic (Al2O3) was investigated by ultrasonic vibration in this study. Taguchi approach is a powerful design tool for high-quality systems. Material removal rate, wafer surface roughness, steel wire wear, kerf width, and flatness during machining ceramic were selected as quality character factors to optimize the machining parameters (swinging angle, concentration, mixed grain and direction of ultrasonic vibration) to get the larger-the-better (material removal rate) and the smaller-the-better (wafer surface roughness, steel wire wear, kerf width and flatness) machining characteristics by Taguchi method. The results indicated that wire swinging produces a higher material removal rate and good wafer surface roughness. Ultrasonic vibration improved material removal rate, without affecting the flatness under different machining conditions. Experimental results show that the optimal wire saw machining parameters based on grey relational analysis can be determined effectively and material removal rate increases from 2.972 to 3.324 mm2/min, wafer surface roughness decreases from 0.37 to 0.34 μm, steel wire wear decreases from 0.78 to 0.77 μm, kerf width decreases from 0.352 to 0.350 mm, and flatness decreases from 7.51 to 7.22 μm are observed.  相似文献   

19.
20.
微细游离磨粒借助流体动压力实现的超精密加工技术   总被引:2,自引:1,他引:2  
精密加工是先进制造方法的重要组成部分,利用微细游离磨粒进行陶瓷、玻璃、半导体等光学零件的超精密加工,不仅可获得高的表面质量,微米级的形状精度和纳米级表面粗糙度值,而且还可得到无加工变质层超精密加工表面。这里主要论述了流体动压力实现的条件及动压浮起平面研磨、浮动抛光、弹性发射加工以及砂轮约束磨粒喷射加工等微细磨粒借助于流体动压力实现超精密加工技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号