首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactoferrin was purported in consumer literature to enhance and support the immune system response through their antioxidant, antibacterial, and anticarcinogenic properties. To improve the effectiveness of lactoferrin, liposomes were used as a carrier in this study. The main purpose of this study was to compare three different methods to prepare the lactoferrin nanoliposomes based on the encapsulation efficiency and size distribution and evaluate the stability and cellular uptake of lactoferrin nanoliposomes. Encapsulation efficiency and size distribution indicated the reverse-phase evaporation method was fit for preparing the lactoferrin nanoliposomes. The stabilities of lactoferrin nanoliposomes in simulated gastrointestinal juice, sonication treatment time and lipoperoxidation extent of storage time were evaluated. The lactoferrin nanoliposomes showed an acceptable stability in simulated gastrointestinal juice at 37°C for 4 h and short treatment times were required to achieve nano-scaled liposomes. Furthermore, the viability of cells was decreased by increasing the concentration of the various lactoferrin nanoliposomes. The methyl thiazolyl tetrazolium results demonstrated that Lf nanoliposomes and Lf activated in the cells in a manner of dose-effect relation and Lf nanoliposomes had a statistically significantly different (p<0.01) between the concentration 5 and 10 mg/mL. According to the results, nanoliposomes may be fit for the oral administration of lactoferrin and could be useful approach for lactoferrin availability in tumor cells.  相似文献   

2.
The complex nanoliposomes encapsulating both a hydrophilic drug vitamin C (vit C) and hydrophobic drug medium-chain fatty acids (MCFAs) was prepared by combining double emulsion method with dynamic high pressure microfluidization. The complex nanoliposomes was further freeze-dried under −86 °C for 48 h with sucrose at the sucrose/lipids ratio of 2:1(w/w) in order to enhance its stability. The freeze-dried complex nanoliposomes under the suitable conditions exhibited high entrapment efficiency of MCFAs (44.26 ± 3.34)%, relatively high entrapment efficiency of vit C (62.25 ± 3.43)%, low average size diameter (110.4 ± 7.28) nm and good storage stability at 4 °C for 60 days with slight changes in mean particle diameter and drug entrapment efficiencies. The results of transmission electron microscopy of freeze-dried complex nanoliposomes also showed that the freeze-dried samples with sucrose were stable without great increase in their particle sizes and without destroying their spherical shape. The results indicated that sucrose presented well protection effects in MCFAs-vit C complex nanoliposomes, suggesting the possibility of further usage in commercial liposomes.  相似文献   

3.
Forced oscillation of spherical and rod-shaped iron oxide magnetic nanoparticles (MNPs) via low-power and low-frequency alternating magnetic field (AMF) was firstly used to kill cancer cells in vitro. After being loaded by human cervical cancer cells line (HeLa) and then exposed to a 35-kHz AMF, MNPs mechanically damaged cell membranes and cytoplasm, decreasing the cell viability. It was found that the concentration and morphology of the MNPs significantly influenced the cell-killing efficiency of oscillating MNPs. In this preliminary study, when HeLa cells were pre-incubated with 100 μg/mL rod-shaped MNPs (rMNP, length of 200 ± 50 nm and diameter of 50 to 120 nm) for 20 h, MTT assay proved that the cell viability decreased by 30.9% after being exposed to AMF for 2 h, while the cell viability decreased by 11.7% if spherical MNPs (sMNP, diameter of 200 ± 50 nm) were used for investigation. Furthermore, the morphological effect of MNPs on cell viability was confirmed by trypan blue assay: 39.5% rMNP-loaded cells and 15.1% sMNP-loaded cells were stained after being exposed to AMF for 2 h. It was also interesting to find that killing tumor cells at either higher (500 μg/mL) or lower (20 μg/mL) concentration of MNPs was less efficient than that achieved at 100 μg/mL concentration. In conclusion, the relatively asymmetric morphological rod-shaped MNPs can kill cancer cells more effectively than spherical MNPs when being exposed to AMF by virtue of their mechanical oscillations.  相似文献   

4.
Nanotechnology, through nanomedicine, allowed drugs to be manipulated into nanoscale sizes for delivery to the different parts of the body, at the same time, retaining the valuable pharmacological properties of the drugs. However, efficient drug delivery and excellent release potential of these delivery systems may be hindered by possible untoward side effects. In this study, the sub-acute toxicity of oral zinc aluminium nanocomposite with and without levodopa was assessed using the Organization for Economic Co-operation and Development guidelines. No sign or symptom of toxicity was observed in orally treated rats with the nanocomposite at 5 and 500 mg/kg concentrations. Body weight gain, feeding, water intake, general survival and organosomatic index were not significantly different between control and treatment groups. Aspartate aminotransferase (AST) in 500 mg/kg levodopa nanocomposite (169 ± 30 U/L), 5 mg/kg levodopa nanocomposite (172 ± 49 U/L), and 500 mg/kg layered double hydroxides (LDH) nanocomposite (175 ± 25 U/L) were notably elevated compared to controls (143 ± 05 U/L); but the difference were not significant (p > 0.05). However, the differences in aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio of 500 mg/kg levodopa nanocomposite (0.32 ± 0.12) and 500 mg/kg LDH nanocomposite (0.34 ± 0.12) were statistically significant (p < 0.05) compared to the control (0.51 ± 0.07). Histology of the liver, spleen and brain was found to be of similar morphology in both control and experimental groups. The kidneys of 500-mg/kg-treated rats with levodopa nanocomposite and LDH nanocomposite were found to have slight inflammatory changes, notably leukocyte infiltration around the glomeruli. The ultra-structure of the neurons from the substantia nigra of nanocomposite-exposed group was similar to those receiving only normal saline. The observed result has suggested possible liver and renal toxicity in orally administered levodopa intercalated nanocomposite; it is also dose-dependent that needs further assessment.  相似文献   

5.
This paper describes the production, purification, and immobilization of l-asparaginase II (ASNase II) in chitosan nanoparticles (CSNPs). ASNase II is an effective antineoplastic agent, used in the acute lymphoblastic leukemia chemotherapy. Cloned ASNase II gene (ansB) in pAED4 plasmid was transformed into Escherichia coli BL21pLysS (DE3) competent cells and expressed under optimal conditions. The lyophilized enzyme was loaded into CSNPs by ionotropic gelation method. In order to get optimal entrapment efficiency, CSNP preparation, chitosan/tripolyphosphate (CS/TPP) ratio, and protein loading were investigated. ASNase II loading into CSNPs was confirmed by Fourier transform infrared (FTIR) spectroscopy, and morphological observation was carried out by transmission electron microscopy. Three absolute CS/TPP ratios were studied. Entrapment efficiency and loading capacity increased with increasing CS and TPP concentration. The best ratio was applied for obtaining optimal ASNase II-loaded CSNPs with the highest entrapment efficiency. Size, zeta potential, entrapment efficiency, and loading capacity of the optimal ASNase II-CSNPs were 340 ± 12 nm, 21.2 ± 3 mV, 76.2% and 47.6%, respectively. The immobilized enzyme showed an increased in vitro half-life in comparison with the free enzyme. The pH and thermostability of the immobilized enzyme was comparable with the free enzyme. This study leads to a better understanding of how to prepare CSNPs, how to achieve high encapsulation efficiency for a high molecular weight protein, and how to prolong the release of protein from CSNPs. A conceptual understanding of biological responses to ASNase II-loaded CSNPs is needed for the development of novel methods of drug delivery.  相似文献   

6.
Surfaces of InP were bombarded by 1.9 keV Ar+ ions under normal incidence. The total accumulated ion fluence Φ the samples were exposed to was varied from 1 × 1017 cm−2 to 3 × 1018 cm−2, and ion fluxes f of (0.4 − 2) × 1014 cm−2 s−1 were used. The surface morphology resulting from these ion irradiations was examined by atomic force microscopy (AFM). Generally, nanodot structures are formed on the surface; their dimensions (diameter, height and separation), however, were found to depend critically on the specific bombardment conditions. As a function of ion fluence, the mean radius r, height h, and spacing l of the dots can be fitted by power-law dependences: r ∝ Φ0.40, h ∝ Φ0.48, and l ∝ Φ0.19. In terms of ion flux, there appears to exist a distinct threshold: below f ~ (1.3 ± 0.2) × 1014 cm−2 s−1, no ordering of the dots exists and their size is comparatively small; above that value of f, the height and radius of the dots becomes substantially larger (h ~ 40 nm and r ~ 50 nm). This finding possibly indicates that surface diffusion processes could be important. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that APT can provide analytical information on the composition of individual InP nanodots. By means of 3D APT data, the surface region of such nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of approximately 1 nm and amount to 1.3 to 1.7.  相似文献   

7.
The structures, processes of shrinkage, and phase composition of the compact system ZrO2-WC, obtained by hot pressing with the transmission of high current, are considered in the article. We found that as a result of compaction, the ZrO2-WC-ceramics have uniform density distribution, with the following optimal mode consolidation values T = 1,350°C, P = 30 MPa and t = 2 min. These conditions allow us to achieve the best combination of ceramic properties by criteria density and strength.  相似文献   

8.
We report the dependence of magnetoresistance effect on resistivity (ρ) in Co/ZnO films deposited by magnetron sputtering at different sputtering pressures with different ZnO contents. The magnitude of the resistivity reflects different carrier transport regimes ranging from metallic to hopping behaviors. Large room-temperature magnetoresistance greater than 8% is obtained in the resistivity range from 0.08 to 0.5 Ω · cm. The magnetoresistance value decreases markedly when the resistivity of the films is less than 0.08 Ω · cm or greater than 0.5 Ω · cm. When 0.08 Ω · cm < ρ < 0.5 Ω · cm, the conduction contains two channels: the spin-dependent tunneling channel and the spin-independent second-order hopping (N = 2). The former gives rise to a high room-temperature magnetoresistance effect. When ρ > 0.5 Ω · cm, the spin-independent higher-order hopping (N > 2) comes into play and decreases the tunneling magnetoresistance value. For the samples with ρ < 0.08 Ω · cm, reduced magnetoresistance is mainly ascribed to the formation of percolation paths through interconnected elongated metallic Co particles. This observation is significant for the improvement of room-temperature magnetoresistance value for future spintronic devices.  相似文献   

9.
La1 − x Al x FeO3 (x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) nanopowders were prepared by polymerization complex method. All prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and UV-vis spectrophotometry (UV-vis). The magnetic properties were investigated using a vibrating sample magnetometer (VSM). The X-ray results of all samples show the formation of an orthorhombic phase with the second phase of α-Fe2O3 in doped samples. The crystallite sizes of nanoparticles decreased with increasing Al content, and they are found to be in the range of 58.45 ± 5.90 to 15.58 ± 4.64 nm. SEM and TEM images show the agglomeration of nanoparticles with average particle size in the range of 60 to 75 nm. The FT-IR spectra confirm the presence of metal oxygen bonds of O-Fe-O and Fe-O in the FeO6 octahedra. The UV-vis spectra show strong absorption peaks at approximately 285 nm, and the calculated optical band gaps are found to be in the range of 2.05 to 2.09 eV with increasing Al content. The M-H loop of the pure sample is antiferromagnetic, whereas those of the doped samples tend to be ferromagnetic with increasing Al content. The magnetization, remanent magnetization, and coercive field of the Al-doped sample with x = 0.5 are enhanced to 1.665 emu/g, 0.623 emu/g, and 4,087.0 Oe, respectively.  相似文献   

10.
Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been identified to have the potential to improve lung fibrosis and lung cancer. To avoid the liver and kidney toxicities and the fast metabolism of emodin, emodin-loaded polylactic acid microspheres (ED-PLA-MS) were prepared and their characteristics were studied. ED-PLA-MS were prepared by the organic phase dispersion-solvent diffusion method. By applying an orthogonal design, our results indicated that the optimal formulation was 12 mg/mL PLA, 0.5% gelatin, and an organic phase:glycerol ratio of 1:20. Using the optimal experimental conditions, the drug loading and encapsulation efficiencies were (19.0 ± 1.8)% and (62.2 ± 2.6)%, respectively. The average particle size was 9.7 ± 0.7 μm. In vitro studies indicated that the ED-PLA-MS demonstrated a well-sustained release efficacy. The microspheres delivered emodin, primarily to the lungs of mice, upon intravenous injection. It was also detected by microscopy that partial lung inflammation was observed in lung tissues and no pathological changes were found in other tissues of the ED-PLA-MS-treated animals. These results suggested that ED-PLA-MS are of potential value in treating lung diseases in animals.  相似文献   

11.
Time-resolved photoluminescence (PL) was applied to study the dynamics of carrier recombination in GaInNAsSb quantum wells (QWs) emitting near 1.3 μm and annealed at various temperatures. It was observed that the annealing temperature has a strong influence on the PL decay time, and hence, it influences the optical quality of GaInNAsSb QWs. At low temperatures, the PL decay time exhibits energy dependence (i.e., the decay times change for different energies of emitted photons), which can be explained by the presence of localized states. This energy dependence of PL decay times was fitted by a phenomenological formula, and the average value of E0, which describes the energy distribution of localized states, was extracted from this fit and found to be smallest (E0 = 6 meV) for the QW annealed at 700°C. In addition, the value of PL decay time at the peak energy was compared for all samples. The longest PL decay time (600 ps) was observed for the sample annealed at 700°C. It means that based on the PL dynamics, the optimal annealing temperature for this QW is approximately 700°C.  相似文献   

12.
The phenolic profile and antioxidant activities of oolong tea extract were investigated after tea was steeped in 90 or 100 °C water for 3 or 10 min. The extraction yield increased with increasing temperature and extended steeping time. However, higher temperature and longer time (100 °C water for 10 min) led to loss of phenolics. The aqueous extract of oolong tea (AEOT) at 100 °C for 3 min exhibited the strongest antioxidant activity. The major polyphenolic components of the AEOT were identified as (−)-epigallocatechin (EGC), (−)-epigallocatechin gallate (EGCG) and (−)-epicatechin-3-gallate (ECG). The two major catechins (EGC and EGCG) in the tea infusion contributed significantly to the investigated antioxidant activities [i.e., the 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) radical scavenging and superoxide radical scavenging activities] with high correlation values in r = 0.9486 and 0.9327 for the EGC and r = 0.9592 and 0.8718 for the EGCG, respectively.  相似文献   

13.
The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.  相似文献   

14.
Treatment of micro-polluted source water is receiving increasing attention because of environmental awareness on a global level. We isolated and identified aerobic denitrifying bacteria Zoogloea sp. N299, Acinetobacter sp. G107, and Acinetobacter sp. 81Y and used these to remediate samples of their native source water. We first domesticated the isolated strains in the source water, and the 48-h nitrate removal rates of strains N299, G107, and 81Y reached 33.69%, 28.28%, and 22.86%, respectively, with no nitrite accumulation. We then conducted a source-water remediation experiment and cultured the domesticated strains (each at a dry cell weight concentration of 0.4 ppm) together in a sample of source water at 20–26 °C and a dissolved oxygen concentration of 3–7 mg/L for 60 days. The nitrate concentration of the system decreased from 1.57 ± 0.02 to 0.42 ± 0.01 mg/L and that of a control system decreased from 1.63 ± 0.02 to 1.30 ± 0.01 mg/L, each with no nitrite accumulation. Total nitrogen of the bacterial system changed from 2.31 ± 0.12 to 1.09 ± 0.01 mg/L, while that of the control system changed from 2.51 ± 0.13 to 1.72 ± 0.06 mg/L. The densities of aerobic denitrification bacteria in the experimental and control systems ranged from 2.8 × 104 to 2 × 107 cfu/mL and from 7.75 × 103 to 5.5 × 105 cfu/mL, respectively. The permanganate index in the experimental and control systems decreased from 5.94 ± 0.12 to 3.10 ± 0.08 mg/L and from 6.02 ± 0.13 to 3.61 ± 0.11 mg/L, respectively, over the course of the experiment. Next, we supplemented samples of the experimental and control systems with additional bacteria or additional source water and cultivated the systems for another 35 days. The additional bacteria did little to improve the water quality. The additional source water provided supplemental carbon and brought the nitrate removal rate in the experimental system to 16.97%, while that in the control system reached only 3.01%, with no nitrite accumulation in either system. Our results show that aerobic denitrifying bacteria remain highly active after domestication and demonstrate the applicability of such organisms in the bioremediation of oligotrophic ecosystems.  相似文献   

15.
The aim of this work was the development of microstructured lipid carriers (MLC) based on chitosan (CH) and containing N-acetylcysteine (NAC), a mucolytic and antioxidant agent, to inhibit the formation of Pseudomonas aeruginosa biofilm. MLC were prepared using the high shear homogenization technique. The MLC were characterized for morphology, particle size, Z potential, encapsulation efficiency and drug release. The antioxidant properties of NAC-loaded microstructured carriers were evaluated through an in vitro spectrophotometer assay. Finally, the activity of NAC-CH-MLC on biofilm production by Pseudomonas aeruginosa was also evaluated. Results obtained from this study highlighted that the use of chitosan into the inner aqueous phase permitted to obtain microstructured particles with a narrow size range and with good encapsulation efficiency. NAC-loaded MLC showed higher antioxidant activity than the free molecule, demonstrating how encapsulation increases the antioxidant effect of the molecule. Furthermore, the reduction of biofilm growth resulted extremely high with MLC being 64.74% ± 6.2% and 83.74% ± 9.95%, respectively, at 0.5 mg/mL and 2 mg/mL. In conclusion, this work represents a favorable technological strategy against diseases in which bacterial biofilm is relevant, such as cystic fibrosis.  相似文献   

16.
The growth of Al:ZnO nanorods on a silicon substrate using a low-temperature thermal evaporation method is reported. The samples were fabricated within a horizontal quartz tube under controlled supply of O2 gas where Zn and Al powders were previously mixed and heated at 700°C. This allows the reactant vapors to deposit onto the substrate placed vertically above the source materials. Both the undoped and doped samples were characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) measurements. It was observed that randomly oriented nanowires were formed with varying nanostructures as the dopant concentrations were increased from 0.6 at.% to 11.3 at.% with the appearance of ‘pencil-like’ shape at 2.4 at.%, measuring between 260 to 350 nm and 720 nm in diameter and length, respectively. The HRTEM images revealed nanorods fringes of 0.46 nm wide, an equivalent to the lattice constant of ZnO and correspond to the (0001) fringes with regard to the growth direction. The as-prepared Al:ZnO samples exhibited a strong UV emission band located at approximately 389 nm (E g  = 3.19 eV) with multiple other low intensity peaks appeared at wavelengths greater than 400 nm contributed by oxygen vacancies. The results showed the importance of Al doping that played an important role on the morphology and optical properties of ZnO nanostructures. This may led to potential nanodevices in sensor and biological applications.  相似文献   

17.
The growth of iron silicides on Si (111) using reactive deposition epitaxy method was studied by scanning tunneling microscopy and X-ray photoelectron spectroscopy (XPS). Instead of the mixture of different silicide phases, a homogeneous crystalline film of c (4 × 8) phase was formed on the Si (111) surface at approximately 750°C. Scanning tunneling spectra show that the film exhibits a semiconducting character with a band gap of approximately 0.85 eV. Compared with elemental Fe, the Fe 2p peaks of the film exhibit a lower spin-orbit splitting (−0.3 eV) and the Fe 2p3/2 level has a smaller full-width at half maximum (−0.6 eV) and a higher binding energy (+0.3 eV). Quantitative XPS analysis shows that the c (4 × 8) phase is in the FeSi2 stoichiometry regime. The c (4 × 8) pattern could result from the ordered arrangement of defects of Fe vacancies in the buried Fe layers.  相似文献   

18.
Monocrystal SnO2 and Pd-SnO2 nanoribbons have been successfully synthesized by thermal evaporation, and novel ethanol sensors based on a single Pd-SnO2 nanoribbon and a single SnO2 nanoribbon were fabricated. The sensing properties of SnO2 nanoribbon (SnO2 NB) and Pd-doped SnO2 nanoribbon (Pd-SnO2 NB) sensors were investigated. The results indicated that the SnO2 NB showed a high sensitivity to ethanol and the Pd-SnO2 NB has a much higher sensitivity of 4.3 at 1,000 ppm of ethanol at 230°C, which is the highest sensitivity for a SnO2-based NB. Pd-SnO2 NB can detect ethanol in a wide range of concentration (1 ~ 1,000 ppm) with a relatively quick response (recovery) time of 8 s (9 s) at a temperature from 100°C to 300°C. In the meantime, the sensing capabilities of the Pd-SnO2 NB under 1 ppm of ethanol at 230°C will help to promote the sensitivity of a single nanoribbon sensor. Excellent performances of such a sensor make it a promising candidate for a device design toward ever-shrinking dimensions because a single nanoribbon device is easily integrated in the electronic devices.  相似文献   

19.
In this study, we have successfully fabricated electrospun polystyrene (PS) nanofibers having a diameter of 326 ± 50 nm with a parallel grooved texture using a mixed solvent of tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). We discovered that solvent system, solution concentration, and relative humidity were the three key factors to the formation of grooved texture and the diameter of nanofibers. We demonstrated that grooved nanofibers with desired properties (e.g., different numbers of grooves, widths between two adjacent grooves, and depths of grooves) could be electrospun under certain conditions. When THF/DMF ratio was higher than 2:1, the formation mechanism of single grooved texture should be attributed to the formation of voids on the jet surface at the early stage of electrospinning and subsequent elongation and solidification of the voids into a line surface structure. When THF/DMF ratio was 1:1, the formation mechanism of grooved texture should be ascribed to the formation of wrinkled surface on the jet surface at the early stage of electrospinning and subsequent elongation into a grooved texture. Such findings can serve as guidelines for the preparation of grooved nanofibers with desired secondary morphology.  相似文献   

20.
Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号