首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
薄板坯流程连铸连轧过程中的细晶化现象分析   总被引:8,自引:4,他引:8  
徐匡迪  刘清友 《钢铁》2005,40(12):1-9
研究了薄板坯连铸连轧工艺的铸坯凝固组织特征和钢带的组织演变规律。通过化学相分析、微观组织分析研究发现,微细AIN粒子在薄板坯连铸过程中可沉淀析出,铸坯经20~30min均热后AIN仅部分溶解。对AIN析出的热力学和动力学分析也证实了AIN在铸坯上沉淀析出的合理性。这些在连轧开始前原始奥氏体中析出的AIN沉淀是抑制变形奥氏体再结晶晶粒长大,细化奥氏体组织,并最终使钢带组织细化的主要原因;同时,薄板坯连铸连轧流程冷却辊道短、冷却强度大等因素也是导致薄板坯连铸连轧过程中Al镇静钢组织细化的主要原因。  相似文献   

2.
王丽娟 《冶金管理》2003,(11):23-28
热轧板生产工艺的发展可以分为两大类:即厚板坯常规热轧板生产工艺和薄板坯连铸连轧生产工艺,其中薄板坯连铸连轧进一步发展为中等厚度板坯连铸连轧工艺。厚板坯一般厚度为200~300mm,薄板坯和中等厚度板坯厚度一般界定为50~70mm(包括90mm经软压下到70mm)和90~150mm。铸坯厚度是区别各类连铸工艺的特征参数,也是影响铸坯质量和产品质量的重要参数。在激烈的市场竞争条件下,连铸技术和热轧板生产技术发展到今天,新建热连轧机究竟采用哪种工艺?连铸坯厚度选择多少合适?薄板坯连铸连轧适合生产哪些品种?目前,这些问题在工程咨询和项目建设前…  相似文献   

3.
基于已开发的板坯连铸二维传热与凝固模型,结合实际连铸工艺条件,计算并重点揭示了沿拉坯方向铸坯表层(0~5mm)宽面中心和角部温度场与冷速分布。结果表明,铸坯在结晶器内浇注温度迅速下降至1 200~900℃,随后在二冷区内缓慢冷却,角部比宽面中心低约200℃;表层铸坯在结晶器内冷速最大达40℃/s,平均冷速约为10℃/s;二冷区内,足辊区冷速约3~6℃/s,随后维持在0.1~0.5℃/s之间。研究结果可用于优化连铸工艺,为从凝固与相变角度控制连铸坯表面及角部横裂纹缺陷提供依据。  相似文献   

4.
赵志斌 《宽厚板》2000,6(2):31-33
1 薄板坯连铸工艺的特点八十年代以来 ,炉外精炼和保护浇注技术的开发 ,促进了薄板坯连铸技术的迅速发展 ,其铸机类型之多 ,发展速度之快 ,都达到前所未有的地步。目前应用于工业生产的薄板坯连铸尚属于固定式结晶器连铸法 ,作为近终形浇注 ,它与传统板坯连铸相比 ,具有下述特点 :1 )板坯厚度小 薄板坯坯厚一般小于或等于 2 0~ 80 mm,典型薄板坯厚度为 50 mm,而厚板坯厚为 2 50 mm;2 )拉坯速度大 目前几种典型薄板坯连铸设计拉速均在5m/ min左右 ,高于传统板坯连铸速度 ;3)凝固速度快 对于 50 mm厚的薄板坯 ,全凝固时间为 0 .9min,而 2…  相似文献   

5.
微合金钢薄板坯连铸过程高发边角部裂纹,致使热轧卷板边部产生翘皮、烂边等质量缺陷,是钢铁行业的共性技术难题。本文立足于某钢厂QStE380TM低碳含铌钛微合金钢薄板坯连铸生产,检测分析了铸坯角部组织金相结构与碳氮化物析出特点、不同冷却与变形速率条件下钢的断面收缩率,并数值仿真研究了不同结构结晶器和二冷区铸坯温度与应力的演变规律。结果表明:微合金钢薄板坯连铸过程存在明显的第三脆性区,且变形速率越大,第三脆性区越显著。传统薄板坯连铸工艺条件下,结晶器的中上部及其出口至液芯压下段的二冷高温区,铸坯角部冷速较低,致使其组织晶界含铌钛微合金碳氮化物呈链状析出。铸坯在液芯压下过程,低塑性角部因受较大变形与应力作用而引发裂纹缺陷。实施沿高度方向有效补偿坯壳凝固收缩的窄面高斯凹型曲面结晶器及其足辊区超强冷工艺,可分别提升铸坯角部冷速至10和20 ℃·s?1以上,从而促使铸坯角部组织碳氮化物弥散析出,并促进铸坯窄面在液芯压下过程金属宽展流动而降低角部压下应力,大幅降低了微合金钢薄板坯边角部裂纹发生率。   相似文献   

6.
中宽度薄板坯连铸工艺特性研究   总被引:2,自引:0,他引:2  
薄板坯连铸技术是国家“七五”重点技术攻关项目,冶金部钢铁研究总院在“七五”实验室及现场热试研究的基础上,从1991年1月至1902年6月,在兰州钢厂薄板坯连铸机上,对3种规格铸坯(50×900 mm,70×900 mm,70×500 am)进行了连续102炉考核试验,其中,1992年6月,共浇注46炉,铸坯总重412 t,连铸拉成率为91.3%,铸坯合格率>90%,完成了国家“八五”一期攻关考核指标。本文对薄板坯连铸工艺中结晶器形状研制、传热、拉坯工艺及影响铸坯质量,尤其是表面质量的因素进行了深入研究,并取得了稳定的工艺参数。  相似文献   

7.
对实验室模拟薄板坯连铸连轧流程试制成功的普通取向硅钢的铸坯进行高温力学性能测试,分析动态再结晶、析出物和相变对取向硅钢热塑性的影响。结果表明:试验取向硅钢无第Ⅱ脆性区;第Ⅲ脆性区的温度范围约为850~600℃;晶界析出物和相变是第Ⅲ脆性区取向硅钢塑性变差的主要原因。  相似文献   

8.
《特殊钢》2016,(4)
用二维切片跟踪铸坯凝固传热的方法建立了X80管线钢(/%:0.04C,1.85Mn,0.25Si,0.006P,0.003S,0.30Ni,0.21Mo,0.06Nb,0.02V)238 mm×1650 mm板坯连铸过程中垂直拉坯方向传热的数学模型,通过ANSYS对X80管线钢连铸过程中温度场及坯壳厚度的渐变进行计算,得出拉速1.2mm/min时,出结晶器坯壳厚为18.14 mm,铸坯液芯长22.58 m。凝固壳厚度计算值射钉测试结果的相对误差≤2.5%,凝固末端位置的相对误差为0.68%。分析了过热度(25~55℃),拉速(1.2~1.3m/min)和二冷水量(79.2~96.8 m~3/h)对切片各点温度和凝固末端位置的影响。结果表明,增大拉速、减小二冷配水量,连铸坯表面温降变慢,凝固末端位置距离结晶器液面越远,凝固时间变长;该X80管线钢板坯连铸最佳工艺参数为钢水过热度35℃,拉速1.2 m/min和二冷配水量88m~3/h。  相似文献   

9.
《特殊钢》2017,(2)
316L不锈钢0.3~4.0 mm冷轧板的冶金生产流程为180 t EAF-AOD-LF-200 mm连铸板坯-热轧2.5~14.0 mm板-冷轧。通过对连铸坯、热轧卷以及冷轧板的化学成分、金相和扫描电镜及能谱检测,并对316L不锈钢冷轧板表面出现的线状缺陷进行了分析。结果表明,连铸坯表面振痕较深,有凹坑,并且存在深度≤300μm微裂纹缺陷;热轧板表面存在线状缺陷,缺陷附近存在大面积的氧化区域;冷轧板缺陷处(S含量0.001%,Cr_(当量)/Ni_(当量)=1.58)未发现较大尺寸的夹杂物。得出冷轧板线状缺陷源来自连铸坯,在加热炉中被严重氧化,最终形成冷轧板表面线状缺陷。通过将铸坯拉速从1.1 m/min降至1.0m/min,钢水过热度从45℃降至40℃,二冷比水量从1.0 kg/t降至0.9 kg/t,铸坯修磨用砂轮由16~#改为20~#等工艺措施,冷轧板表面缺陷大幅减少。  相似文献   

10.
针对薄板坯连铸连轧流程(TSCR)生产具有低温加热(1200℃)抑制剂成分取向硅钢,研究了薄板坯连铸、均热以及热连轧过程中MnS和Cu2S的析出特征,研究结果表明,连铸过程形成的MnS在1180℃下难以完全固溶,并形成尺寸为200~600 nm的粗大MnS粒子,而在此温度下Cu2S可以完全固溶并在热连轧过程中细小弥散析出,平均粒子尺寸约为30 nm,可以作为取向硅钢的有效抑制剂。  相似文献   

11.
Nb-和V-微合金化对高碳钢热加工性的影响   总被引:1,自引:0,他引:1  
刘平  李峰  陈爱梅  史凤武 《特殊钢》2008,29(6):13-14
用Gleeble 1500D热模拟机试验了0.03%Nb、0.03%Nb-0.02%V和0.05%V微合金化0.75%~0.78%C高碳钢280 mm×380 mm铸坯上钻取的Φ10 mm×120 mm试样在1 300~800℃的断面收缩率和抗拉强度。结果表明,第1脆性区≥1 200℃和第3脆性区1 000~800℃V-钢的热塑性优于Nb-V钢和Nb钢。扫描电镜和能谱分析表明,Nb-钢铸坯存在Fe-Nb-C共晶体,加入V的Nb-V钢铸坯存在Fe-Nb共晶体。  相似文献   

12.
采用DIL402C热膨胀仪和Gleeble-1500D热模拟试验机,测试了Q450NQR1钢(%:0.05~0.10C、0.30~0.50Si、0.80~1.00Mn、0.20~0.30Cu、0.15~0.35Ni、0.40~0.60Cr)200 mm×1 350 mm铸坯的热膨胀性能和高温力学性能。结果表明,升-降温速率由5℃/min提高至10℃/min时,升温相变温度区间上移,降温相变区间下移;Q450NQR1钢连铸坯二次脆性区为750~1 050℃,铸坯的矫直温度应≥1 050℃。  相似文献   

13.
热轧工艺对冷轧无取向硅钢50W600磁性能的影响   总被引:1,自引:1,他引:0  
夏兆所  康永林 《特殊钢》2006,27(6):47-49
试验了180mm铸坯加热温度(1200℃、1180℃)、2.3mm热轧卷轧制道次(7道次、5道次)、精轧终轧温度(780~860℃)和卷取温度(≤710℃)对0.5mm冷轧无取向硅钢50W600的铁损和磁感应强度的影响。结果表明,降低铸坯加热温度,提高终轧温度和卷取温度,有利于改善该冷轧无取向硅钢成品的磁性能;而粗轧道次对成品磁性能无明显影响。  相似文献   

14.
齐新霞  贾琦 《特殊钢》2022,43(4):1-4
以Q460钢(/%:0.17C,0.35Si,1.5Mn,0.020P,0.020S,0.020Nb,0.075V)3 250 mm×150 mm宽板坯为研究对象,采用ANSYS软件建立凝固传热模型,研究拉坯速度、比水量、过热度等工艺参数对铸坯凝固过程的影响。模拟结果表明:拉坯速度每增大0.10 m/min,矫直段铸坯表面温度升高36.5℃,出坯温度升高50℃,坯壳厚度减薄2.4 mm,液心长度增加1.2 m;每增加1℃的过热度,矫直点铸坯上表面中心温度增加1.73℃,延长液芯长度0.11 m;因此,拉坯速度是影响铸坯质量的关键。生产应用表明,3 250 mm×150 mm板坯拉速1.20~1.25 m/min,过热度15~20℃时板坯表面矫直温度大于950℃,降低了铸坯中心疏松和偏析,表面质量显著提高。  相似文献   

15.
吴浩  鲍思前  赵刚  许柳  陈建徽 《特殊钢》2014,35(6):51-53
通过Gleeble-1500热模拟机对50CrV4弹簧钢(/%:0.53C,0.18Si,0.84Mn,0.012P,0.003S,0.92Cr,0.12V,0.02Ti)50 mm连铸板坯锻制成的15 mm板进行双道次热压缩试验。研究该钢在850~1000℃以真应变0.1~0.25,应变速率0.1~10 s-1,道次间隔1~80 s形变时的静态再结晶行为,并建立了静态再结晶动力学模型。结果表明,随温度、应变量、应变速率、道次间隔时间增加,会加速50CrV4钢静态再结晶进程;在950℃,真应变0.25,应变速率为0.1,1,10 s-1时,该钢发生50%再结晶所需的时间分别为8.42,4.40,2.22 s;该钢静态再结晶激活能为249.974 kJ·mol-1。  相似文献   

16.
利用Gleeble-3500热模拟试验和Factsage7.0软件、扫描电子显微镜、红外热像仪等方法对微合金化0.125%C C36船板钢250 mm×2070 mm连铸板坯高温热塑性及其角部横裂纹的形成机理进行了系统分析。结果表明,800~1 200℃为C36船板钢的高温塑性区间,其中800~1 000℃的断面收缩率为75.5%~80.9%,1 050~1 200℃的断面收缩率达到87.8%~95.0%。第二相粒子NbC在950~1 100℃的大量析出是阻碍该变形温度下C36船板钢中再结晶晶粒长大的主要原因。C36船板钢铸坯角部横裂纹形成于外弧且为沿晶脆性开裂,其裂纹的形成可能与其连铸二冷9段铸坯外弧角部温度(706℃)接近脆性温度区间且进行了静态压下有关。通过将C36钢连铸拉速从0.90 m/min提高至0.95 m/min,铸坯外弧角温度由706℃提高至731℃,铸坯外弧角裂纹发生率由5.67%降至3.68%。  相似文献   

17.
泰山不锈钢厂采用60 t电弧炉-GOR底吹转炉精炼-160 mm×1600 mm板坯连铸的工艺流程冶炼不锈钢。通过Gleeble-1500D热模拟试验机试验研究了奥氏体不锈钢201(6.54Mn-16.71Cr-3.62Ni)和J4(8.93Mn-14.84Cr-1.08Ni-1.25Cu),铁素体不锈钢430(16.29Cr)和马氏体不锈钢410S(13.5Cr)连铸板坯的高温力学性能。结果表明,各不锈钢的第Ⅲ脆性温度区分别为201钢-665~990℃,J4钢-600~950℃,430钢-600~700℃和410S钢-720~930℃;201和J4钢采用较弱二次冷却,矫直温度分别控制为≥1010℃和≥995℃,430钢用较强二次冷却,矫直温度900~950℃;410S钢用较弱二次冷却,矫直温度≥980℃。  相似文献   

18.
采用Gleeble-3500热模拟试验机研究D36船板钢连铸板坯的高温力学性能,用扫描电镜观察断口形貌,并分析脆化机理。结果表明:不含钒的铸坯第Ⅰ脆性温度区大于1 350℃;其在1 350~950℃时断面收缩率大于80%,具有良好的高温塑性;第Ⅲ脆性温度区为950~600℃,此时试样断面收缩率处于41.7%~64%。含钒的铸坯第Ⅰ脆性温度区为熔点至1 250℃;在1 250~950℃范围内,塑性较好;其第Ⅲ脆性温度区为950~600℃,此时断面收缩率在34%~73%。为预防铸坯矫直过程裂纹产生,要控制矫直温度在950℃以上。  相似文献   

19.
在热回复条件下,采用Gleeble-1500D热/力模拟实验机,研究测试了高强耐候钢Q450NQR1(/%:0.05~0.10C、0.30~0.50Si、0.80~1.00Mn、≤0.020P、≤0.008S、0.20~0.40Cu、0.15~0.35Ni、0.40~0.60Cr)200mm×1 350 mm铸坯试样在700~1 000℃,热拉伸应变率5×10-3 s-1时的强度、塑性模量和断面收缩率。结果表明,随温度下降铸坯塑性模量(硬化系数)和强度增加,800℃时铸坯的强度随温度的变化速率出现明显转变;925~700℃时铸坯断面收缩率≤60%;为保证铸坯质量,在矫直过程铸坯表面温度应≥950℃。  相似文献   

20.
为改善钢厂E36钢板坯内部质量,通过ProCAST软件建立E36钢板坯凝固过程数学模型,并在此基础上采用CAFE模块对研究过热度(10~25℃)、拉速(0.70~0.85 m/min)和二冷比水量(0.30~0.39 L/kg)等不同连铸工艺参数以及加入电磁搅拌的300 mm×2 070 mm铸坯凝固组织进行模拟.从模...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号