首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silica-coated lanthanum–strontium manganite particles with La0.76Sr0.24MnO3+δ stoichiometric formula, exhibiting Curie temperature at ∼40°C, were prepared by using a traditional solid-state method of synthesis of magnetic ceramic particles, followed by milling and a low-temperature coating procedure in an aqueous alcoholic alkali medium. The properties of the obtained material establish it as a potential candidate for self-regulated power-absorbing and temperature-controlling materials in hyperthermia treatments. Moreover, core-comprising LaSr–manganites with different stoichiometries, ranging from La0.5Sr0.5MnO3+δ to LaMnO3+δ, were synthesized, with magnetic and structural properties examined thereof. Herein reported findings can potentially be used in the preparation of silica-coated magnetic particles with designable Curie temperature, offering a wide range of possibilities of adapting the material to practical instrumental setups in drug delivery and hyperthermia treatments.  相似文献   

2.
LaMn1− y 3+Mn y 4+O3±d and La0.67R0.33Mn1− y 3+Mn y 4+O3±d (R = Ca, Sr, Ba) phases were synthesized at 350°C by using very reactive, amorphous precursors obtained from the stoichiometric citrate solutions. The chemical process was optimized with respect to the solution concentration, pH, and additives. The precursor reactions were investigated as a function of the cation stoichiometry and the additive by simultaneous thermal and thermogravimetric analysis and X-ray diffraction. The reaction pathway was found to be independent of the cation stoichiometry, but related to the acid or base additive. The annealing temperature was systematically increased in the 350–1200°C interval and the La0.67Sr0.33MnO3±d properties (i.e., crystal sizes, Mn average valence, Curie temperature, magnetization, magnetic susceptibility) were measured and found to vary consistently as a function of it.  相似文献   

3.
Sintered submicrometer powder mixtures of strontium-substituted lanthanum manganite and yttria-stabilized zirconia have been studied in order to investigate the chemical stability of these materials as respectively electrode and electrolyte in solid oxide fuel cells. Formation of secondary phases was observed after 1 h heat treatment at 1350°C and more than 13 h at 1200°C. La2Zr2O7 was formed in mixtures with LaMnO3 at 1350°C, while SrZrO3 was formed in mixtures containing La0.6Sr0.4MnO3 or La0.4Sr0.6MnO3. Only minor amounts of secondary phases were observed in mixtures with La0.7Sr0.3MnO3. Chemical analysis revealed considerable interdiffusion between the primary phases as well as A-site deficiency of LaMnO3 and La0.7Sr0.3MnO3 when exposed to cubic zirconia. The oxidative/reductive nature of the chemical reaction between strontium-substituted lanthanum manganite and yttria-stabilized zirconia is discussed in relation to the Sr content in LSM. The lattice parameter of cubic zirconia was observed to be quite sensitive to the interdiffusion and is an excellent tool for investigating reactions on heterophase interfaces involving stabilized zirconia.  相似文献   

4.
Powder compositions of LaGaO3, La0.9Sr0.1GaO2.95, and La0.8Sr0.2Ga0.83Mg0.17O2.815 were prepared via a Pechini-type process that uses citric acid and ethylene glycol. The calcination behavior of the precursor powders of the above-mentioned phases was studied in the temperature range of 200°–1400°C in an air atmosphere. Characterization of the powder samples were performed using several processes, including X-ray diffractometry, thermogravimetry/differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, inductively coupled plasma–atomic emission spectroscopy, and carbon and nitrogen analyses.  相似文献   

5.
Ceramics of the melilite-type compound La1+ x Sr1− x Ga3O7−δ were prepared by conventional ceramic processing. Samples prepared represented the entire homogeneity region of the phase (i.e., x =−0.15 to 0.60). Electrochemical characterization under variable temperature and atmospheric conditions in the vicinity of air entailed four-point direct-current conductivity measurements and electromotive force measurements. La1+ x Sr1− x Ga3O7−δ samples exhibited a p -type behavior with generally increased conductivity with increased substitution of lanthanum for strontium, which reached a saturation value of ∼10−1 S·cm−1 at 950°C.  相似文献   

6.
La0.8Sr0.2Cr0.9Ti0.1O3 perovskite has been designed as an interconnect material in high-temperature solid oxide fuel cells (SOFCs) because of its thermal expansion compatibility in both oxidizing and reducing atmospheres. La0.8Sr0.2Cr0.9Ti0.1O3 shows a single phase with a hexagonal unit cell of a = 5.459(1) Å, c = 13.507(2) Å, Z = 6 and a space group of R -3 C . Average linear thermal expansion coefficients of this material in the temperature range from 50° to 1000°C were 10.4 × 10−6/°C in air, 10.5 × 10−6/°C under a He–H2 atmosphere (oxygen partial pressure of 4 × 10−15 atm at 1000°C), and 10.9 × 10−6/°C in a H2 atmosphere (oxygen partial pressure of 4 × 10−19 atm at 1000°C). La0.8Sr0.2Cr0.9Ti0.1O3 perovskite with a linear thermal expansion in both oxidizing and reducing environments is a promising candidate material for an SOFC interconnect. However, there still remains an air-sintering problem to be solved in using this material as an SOFC interconnect.  相似文献   

7.
(La0.8Sr0.2)0.98Fe0.98Cu0.02O3−δ can be sintered directly onto YSZ (without the need for a protective ceria interlayer). Though subject to an extended "burn-in" period (∼200 h), anode-supported YSZ cells using the Cu-doped LSF achieve power densities ranging from 1.3 to 1.7 W/cm2 at 750°C and 0.7 V. These cells have also demonstrated 500 h of stable performance. The results are somewhat surprising given that XRD indicates an interaction between (La0.8Sr0.2)0.98Fe0.98-Cu0.02O3−δ and YSZ resulting in the formation of strontium zirconate and/or monoclinic zirconia. The amount and type of reaction product was found to be dependent on cathode and electrolyte powder precalcination temperatures.  相似文献   

8.
A yttria-stabilized zirconia (YSZ) thin film on an La0.8Sr0.2MnO3 porous cathode substrate was prepared, using electrophoretic deposition (EPD) to fabricate a solid oxide fuel cell (SOFC). The electrical conductivity of an La0.8Sr0.2MnO3 substrate is satisfactorily high at room temperature; therefore, YSZ powder could be deposited electrophoretically onto an La0.8Sr0.2MnO3 substrate without any extra surface treatment, such as a metal coating. Successive repetition of EPD and sintering was required to obtain a film without gas leakage, because of the thermal expansion coefficient mismatch between the YSZ and the La0.8Sr0.2MnO3 substrate. On the other hand, the electromotive force of the oxygen concentration in the cell that used YSZ film prepared via EPD increased and attained the theoretical value when the number of deposition and calcination cycles was increased. Six or more successive repetitions were required to obtain a YSZ film without gas leakage. A planar-type SOFC was fabricated, using nickel as the anode and YSZ film (∼10 μm thick) that had been deposited onto the La0.8Sr0.2MnO3 substrate as the electrolyte and cathode. The cell exhibited an open circuit voltage of 1.0 V and a maximum power density of 1.5 W/cm2. Thus, the EPD method could be used as a colloidal process to prepare YSZ thin-film electrolytes for SOFCs.  相似文献   

9.
Phase stability studies were performed within the quasi-ternary system LaGaO3-SrGaO2.5-"LaMgO2.5". Emphasis was cast on the temperature dependence of the homogeneity region of La1− x Sr x Ga1− y Mg y O3−δ perovskite solid solutions. Isothermal sections were determined at 1100°, 1250°, 1400°, and 1500°C in a static air atmosphere. The single-phase homogeneity region was found to considerably diminish with decreasing temperature, indicating a reduction of the solid solubility of Sr and Mg, and below 1100°C the doped perovskite becomes unstable. Consequently, the cubic perovskite phase was found to exist only at elevated temperatures and for high Sr and Mg amounts. Sample preparation was performed by the mixed-oxide process as well as by a modified combustion synthesis.  相似文献   

10.
A two-dimensional finite element model is developed to study the reaction kinetics and heat transfer during the self-propagating high-temperature synthesis of La0.6Sr0.4MnO3, a cathode and interconnect material used in solid oxide fuel cells. The activation energy of La0.6Sr0.4MnO3 formation was calculated from experimental temperature history. The calculated spatial-temporal temperature profile, heat generation rate, reaction conversion, and flow pattern of surrounding gas during the reaction are reported in this work. Hot spots are found at the corner near the ignition point shortly after the ignition. The model provided a simple and reliable way to design a large-scale production of La0.6Sr0.4MnO3.  相似文献   

11.
Formation of secondary phases and diffusion of cations in diffusion couples of yttria-stabilized zirconia and lanthanum manganite substituted with 0 to 60 mol% strontium have been studied by scanning electron microscopy and energy dispersive X-ray spectroscopy. Only the primary phases were observed after 120 h at 1200°C, while formation of secondary phases was identified already after 1 h heat treatment at 1350°C. The phase composition of the reaction layer altered from La2Zr2O7 to SrZrO3 at increasing Sr content in La x Sr1- x MnO3. The thickness of the reaction layer was increasing with heat treatment time. In diffusion couples of La0.4Sr0.6MnO3 formation of manganese oxide was observed in the perovskite layer after 1 h heat treatment at 1350°C, while isolated grains of SrZrO3 relatively deep inside the zirconia were observed after longer heat treatment time. Diffusion of Mn into zirconia was observed preferenced along grain boundaries in the early stage of the interface reaction.  相似文献   

12.
Exposure of (La0.90Sr0.10)0.98MnO3+δ (LSM-10) to repeated oxygen partial pressure cycles (air/10 ppm O2) resulted in enhanced densification rates, similar to behavior shown previously due to thermal cycling. Shrinkage rates in the temperature range 700°–1000°C were orders of magnitude higher than Makipirtti–Meng model estimations based on stepwise isothermal dilatometry results at a high temperature. A maximum in enhanced shrinkage due to oxygen partial pressure cycling occurred at 900°C. Shrinkage was the greatest when LSM-10 bars that were first equilibrated in air were exposed to gas flows of lower oxygen fugacity than in the reverse direction. The former creates transient cation and oxygen vacancies well above the equilibrium concentration, resulting in enhanced mobility. These vacancies annihilate as Schottky equilibria are reestablished, whereas the latter condition does not lead to excess vacancy concentrations.  相似文献   

13.
Phase equilibria of the La2O3–SrO–CuO system have been determined at 950°C at 30 kbar (3 GPa). Stable phases at the apexes of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2, CuO4 and La2Cu2O5 in the LaO1.5–CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO–SrO binary. The La2– x Sr x -CuO4–δ solid solution is stable for 0.00 is ≤ x ≤ 1.29, the La2– x Sr1+ x Cu2O6+δ solid solution is stable for 0.03 ≤ x ≤0.20, the La2– x Sr x Cu2O5–δ solid solution is stable for 0.00 ≤ x ≤1.08, and the La x Sr14– x Cu24O41 solid solution is stable for 0.00 ≤ x ≤ 6.15. The 30 kbar phase diagram differs from the 1 atm (0.1 MPa) and 10 kbar (1 GPa) results principally in the absence of La1– x Sr2+ x Cu2O5.5+δ as a stable phase and the extended range of the La2– x Sr x Cu2O5–δ solid solution at 30 kbar.  相似文献   

14.
We have found a new phase of La0.05Sr0.95MnO3 with a 30-layer rhombohedral structure by using electron microscopy. The lattice constants were hexagonal axes of a = 0.5444 nm and c = 6.7582 nm. Both weak and strong intensities appeared in selected area diffraction (SAD) patterns. The strong intensities were caused by the periodicity of 15 (Sr,La)O3 layers that had a new stacking sequence of (cchch)3. However, the weak intensities indicated that the 15-layer structure has modulation along the c -direction that is twice as long as that of the structure indicated by the strong intensities. We concluded that the modulation of the 30-layer structure was produced by the introduction of two kinds of oxygen octahedra, Mn3+O6 and Mn4+O6.  相似文献   

15.
Phase equilibria of the La2O3-SrO-CuO system have been determined at 950°C and 10 kbar (1 GPa). Stable phases at the apices of the ternary phase diagram are CuO, La2O3, and SrO. Stable intermediate phases are La2CuO4 in the LaO1.5-CuO binary and Sr2CuO3, SrCuO2, and Sr14Cu24O41 in the CuO-SrO binary. The La2-xSr x CuO4-δ solid solution is stable where 0.0 ≤ x ≤ 1.3, the La2-xSr1+xCu2O6+δ solid solution is stable where 0.0 ≤ x ≤ 0.2, the La8-xSr x Cu8O20-δ solid solution is stable where 1.3 ≤ x ≤ 2.7, the La x Sr14-x-Cu24O41 solid solution is stable where 0 ≤ x ≤ 6, and the La1+xSr2-xCu2O5.5+δ phase is stable where 0.04 ≤ x ≤ 0.16. The La2O3-SrO-CuO phase diagram at 950°C and 10 kbar is almost identical to that determined by other authors at 950°C and 1 atm, in terms of phase stability and solid-solution ranges.  相似文献   

16.
Conductive La0.8Sr0.2MnO3 (LSM) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) layers with a thickness of ∼10 μm were deposited on ferritic stainless steel (SS) by the aerosol deposition method, for use as an oxidation resistance-coating layer in the metallic interconnector of a solid oxide fuel cell. The coated layers were fairly dense without pores or cracks, and maintained good adhesion even after oxidation at 800°C for 100 h. The surface of the bare SS after annealing at 800°C for 100 h was covered with Cr2O3 and Fe3O4 oxide scales, and the electrical conductivity was sharply decreased. However, the LSM- and LSCF-coated SSs showed a surface microstructure with almost no oxidation and maintained good electrical conductivity after annealing at 800°C for 100 h. The area-specific resistance (ASR) of LSM- and LSCF-coated alloys after 100 h of oxidation at 800°C was 20.6 and 11.7 mΩ·cm2, respectively.  相似文献   

17.
A novel, microchanneled tubular solid oxide fuel cell was fabricated using a multipass extrusion process, with an outside diameter of 2.7 mm that contained 61 cells. Cell materials used in this work were 8 mol% yttria-stabilized zirconia (8YSZ), La0.8Sr0.2MnO3 (LSM), and NiO–8YSZ (50:50 vol%) as electrolyte, cathode, and anode, respectively. Three stages of heat-treatment processes were applied, at 700°C in N2 condition, at 1000°C in air, and then sintered at 1300°C for 2 h, respectively. The X-ray diffraction analysis confirmed that no reaction phases appeared after sintering. The microstructures of anode and cathode were fairly porous while the electrolyte had a dense microstructure (relative density >96%). The thickness of electrolyte, anode, and cathode were 20, 30, and 40 μm, respectively, and the diameter of the continuous channels was 150 μm.  相似文献   

18.
A centrifugal casting technique was developed for depositing thin 8-mol%-yttrium-stabilized zirconia (YSZ) electrolyte layers on porous NiO-YSZ anode substrates. After the bilayers were cosintered at 1400°C, dense pinhole-free YSZ coatings with thicknesses of ∼25 μm were obtained, while the Ni-YSZ retained porosity. After La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Ce0.9Gd0.1O1.95 (GDC) or La0.8Sr0.2MnO3 (LSM)-YSZ cathodes were deposited, single SOFCs produced near-theoretical open-circuit voltages and power densities of ∼1 W/cm2 at 800°C. Impedance spectra measured during cell tests showed that polarization resistances accounted for ∼70%–80% of the total cell resistance.  相似文献   

19.
Annealing studies were conducted on bulk La0.7Ca0.3MnO3−δ to determine the sensitivity of its structural and magnetic properties to oxygenation conditions. Standard bulk sintering conditions, thin-film annealing conditions for obtaining good magnetoresistive properties, and a reducing anneal, which corresponded to the onset of phase decomposition, were conducted. The main phase formed was a face-centered (fcc) pseudocubic double-perovskite structure, with cell parameters of a ∼ 2 a p∼ 0.772 nm, where a p is the single-perovskite cubic cell parameter. A minor superstructure—body-centered pseudotetragonal, with lattice parameters of c = 4 a p and a =√2 a p—was observed in samples with (3 −δ) < 3. A maximum of 20% of the superstructure was formed using the most-reducing conditions. The superstructure had a lower critical temperature than the main phase and depressed ferromagnetic order.  相似文献   

20.
The reaction of La1- x Ca x MnO3 ( x = 0, 0.1, 0.2) with ZrO2-8 mol% Y2O3 (YSZ) has been investigated at temperatures ranging from 1300° to 1425°C in air. Substitution of Ca for La in LaMnO3 depresses the reactivity with YSZ. A layer of La2Zr2O7 is formed at the La1- x Ca x MnO3/YSZ interface after an induction period, and its formation is accelerated when the La1- x Ca x MnO3 phase is porous. The reaction proceeds by unidirectional diffusion of La, Mn, and/or Ca ions, mainly Mn ions, into YSZ. The diffusion coefficients of La and Mn ions in YSZ, which are estimated using a LaMnO3/single-crystal YSZ couple, are much lower than that of oxygen ion. From the experimental data, a reaction mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号