首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, flow fields in the three-dimensional, tangentially crossing micro-channels were studied. The effect of the relevant geometrical parameters such as the aspect ratio, contact surface area, surface to volume factor, flow rate and cross angle on the flow turning was reported. When the geometries and the flow conditions of the two crossing channels were the same, the fraction of turning flow was found to be dependent on the aspect ratio of the channel as reported previously in the literature. However, if the configuration and flow conditions of the two channels were different, the results need to be clarified. A parameter of non-dimensionalized surface to volume ratio was devised to characterize the flow turning. And the parameter was tested against its validity using numerical simulation and the available experimental data. The experiments on the crossing angle were conducted to show that larger angle in general yielded higher turning flow ratio. The results are expected to be useful in the passive control of flow in micro-fluidic devices among others.  相似文献   

2.
The trajectory of a cylindrical particle driven by electrophoresis was transiently simulated as the particle moves through a 90° corner. A variety of system parameters were tested to determine their impact on the particle motion. The zeta potential, channel width, and particle aspect ratio were shown to have a minimal effect on the particle motion. Conversely, the initial vertical position of the particle and initial angle with respect to the horizontal had a significant impact on the particle motion. The presence of the 90° corner acts to reduce the initial distribution of angles to the vertical of 90° to less than 30°, demonstrating the possibility of using a corner as a passive control element as part of a larger microfluidic system. However, the reduction in angle is limited to the area near the corner posing a limitation on this means of control.  相似文献   

3.
4.
In this paper we present a new concept of creating and using capillary pressure gradients for passive degassing and passive methanol supply in direct methanol fuel cells (DMFCs). An anode flow field consisting of parallel tapered channels structures is applied to achieve the passive supply mechanism. The flow is propelled by the surface forces of deformed CO2 bubbles, generated as a reaction product during DMFC operation. This work focuses on studying the influence of channel geometry and surface properties on the capillary-induced liquid flow rates at various bubbly gas flow rates. Besides the aspect ratios and opening angles of the tapered channels, the static contact angle as well as the effect of contact angle hysteresis has been identified to significantly influence the liquid flow rates induced by capillary forces at the bubble menisci. Applying the novel concept, we show that the liquid flow rates are up to thirteen times higher than the methanol oxidation reaction on the anode requires. Experimental results are presented that demonstrate the continuous passive operation of a DMFC for more than 15 h.  相似文献   

5.
Two-phase parallel microflows, i.e., stratified flow and core-annular flow, have many applications in lab-on-chip devices. These include transport and reaction processes, such as liquid–liquid extraction and phase transfer catalysis. The phase holdup (fraction of the microchannel volume occupied by a specified phase) is a key parameter of these flow systems. In this work, mathematical models based on fundamental principles are used to predict the phase holdup in stratified flow and core-annular flow. For stratified flow, a two-dimensional model of flow in a rectangular channel of arbitrary aspect ratio is considered. A simpler one-dimensional model of stratified flow between infinite parallel plates is also analyzed. In the case of core-annular flow, axisymmetry is assumed in the model. The results of the models agree well with published experimental results. The dependence of phase holdup on the flow-rate fraction (the primary operating variable which can be controlled experimentally) is studied in detail. The nature of this relationship varies with the ratio of fluid viscosities and the channel’s aspect ratio (in the case of stratified flow). In the literature, the holdup is sometimes erroneously assumed to be identical to the flow-rate fraction. It is shown that this is not possible in the case of core-annular flow, while in stratified flow it is true only for a unique critical flow-rate. This critical flow-rate is viscosity dependent. The aspect ratio of the channel is found to have a considerable influence on the holdup in stratified flow when the fluids have different viscosities. However, even in such cases, there exists a point of geometric invariance at which the holdup is independent of the aspect ratio. At this point, the simple one-dimensional model of stratified flow can predict the holdup with complete accuracy.  相似文献   

6.
This study aims to identify distinct blood flow characteristics in a microchannel at different sloping angles. The channel is determined by a bottom hydrophilic stripe on a glass substrate and a fully covered hydrophobic glass substrate. The channel has a height of 3 μm, and a width of 100 μm. It is observed that increasing the sloping angle from −90° (downward flow) to 90° (upward flow) increases the blood flow rate monotonically. These peculiar behaviors on the micro scale are explained by a dynamic model that establishes the balance among the inertial, surface tension, gravitational, and frictional forces. The frictional force is further related to the effective hematocrit. The model is used to calculate the frictional force, and thus the corresponding hematocrit, which is smaller when the blood flows upward, reducing the frictional force.  相似文献   

7.
This paper investigates the effect of radius ratio, and channel aspect ratio on the flow performance of newly introduced single and double disk viscous micropumps. A lubrication solution for the flow field, which accounts for both radius and channel aspect ratios either in single or double disk micropumps was developed and compared with available experimental data and with an approximate solution which estimates for the flow rate only in single disk pump and neglects channel aspect ratio. Additionally, a number of 3D numerical models for single and double disk micropumps were built and analyzed using the finite volume method. Pressure and drag shape factors were introduced to describe the effects of radius and channel aspect ratios on the flow rate. The values of these factors for the whole range of studied parameters are found analytically and numerically. The error in estimating the flow rate was found to be less than 10% for r 1 /r 2 > 0.2, and less than 7% for the studied range of h/w. Also, the lubrication solution was found to be in good agreement with the numerical and experimental results.  相似文献   

8.
Direct simulation Monte Carlo (DSMC) method with simplified Bernoulli trials (SBT) collision scheme has been used to study the rarefied pressure-driven nitrogen flow through diverging micro- and nanochannels. The fluid behaviours flowing between two plates with different divergence angles ranging between 0° and 17° are described at different pressure ratios (1.5 ≤ Π ≤ 2.5) and Knudsen numbers (0.03 ≤ Kn ≤ 12.7). The primary flow field properties, including pressure, velocity, and temperature, are presented for divergent micro- and nanochannels and are compared with those of a micro- and nanochannel with a uniform cross section. The variations of the flow field properties in divergent micro- and nanochannels which are influenced by the area change, the channel pressure ratio, and the rarefication are discussed. The results show no flow separation in divergent micro- and nanochannels for all the range of simulation parameters studied in the present work. It has been found that a divergent channel can carry higher amounts of mass in comparison with an equivalent straight channel geometry. A correlation between the mass flow rate through micro- and nanochannels, the divergence angle, the pressure ratio, and the Knudsen number has been suggested. The present numerical findings prove the occurrence of Knudsen minimum phenomenon in micro- and nanochannels with non-uniform cross sections.  相似文献   

9.
This paper presents a comparative study of the flow of liquid and gases in microchannels of converging and diverging cross sections. Towards this, the static pressure across the microchannels is measured for different flow rates of the two fluids. The study includes both experimental and numerical investigations, thus providing several useful insights into the local information of flow parameters as well. Three different microchannels of varying angles of convergence/divergence (4°, 8° and 12°) are studied to understand the effect of the angle on flow properties such as pressure drop, Poiseuille number and diodicity. A comparison of the forces involved in liquid and gas flows shows their relative significance and effect on the flow structure. A diodic effect corresponds to a difference in the flow resistance in a microchannel of varying cross section, when the flow is subjected alternatively to converging and diverging orientations. In the present experiments, the diodic effect is observed for both liquid and gas as working fluids. The effect of governing parameters—Reynolds number and Knudsen number, on the diodicity is analysed. Based on these results, a comparison of design perspectives that may be useful in the design of converging/diverging microchannels for liquid and gas flows is provided.  相似文献   

10.
The aim of this study was to investigate the effect of operating parameters such as liquid flow rate, gas inlet pressure, and capillary diameter as well as the influence of the physical properties of the liquid, in particular viscosity, on the generation of monodisperse microbubbles in a circular cross section T-junction device. Aqueous glycerol solutions with viscosities ranging from 1- to 100 mPa s were used in the experiments. The bubble diameter generated was studied for systematically varied combinations of gas inlet pressure, liquid flow rate, and liquid viscosity with a fixed capillary inner diameter of 150 μm for the liquid and gas inlet channels as well as the outlet channel. In addition, the effect of channel geometry on bubble size was studied using capillaries with inner diameters of first 100 and then 200 μm. In all the experiments the distance between the coaxial capillaries at the junction was set to be 200 μm. All the microbubbles produced in this study were highly monodisperse (polydispersity index <1 %) and it was found, as expected, that bubble formation and size were influenced by the ratio of liquid to gas flow rate, capillary size, and liquid viscosity. The experimental data were then compared with empirical scaling laws derived for rectangular cross-section junctions. In contrast with these previous studies, which have found bubble size to be dependent on either the flow rate ratio (the squeezing regime) or capillary number (the dripping regime), in this experimental study bubble size was found to depend on both capillary number and flow ratio.  相似文献   

11.
The modification of polymer surface wettability is receiving increasing interest in recent years. As surface wettability affects the flowing resistance, and thus the separation ratio and/or mixing ratio of samples in different microchannels, the controlled modification of surface wettability is highly desirable. In this study, microfluidic channels with controlled surface wettability were achieved and fabricated using femtosecond (fs) laser direct ablation of polymethyl methacrylate at various fluences. Varied flow velocities and separation ratio of water in microfluidic channels have been successfully obtained through fs laser-induced modification in wetting characteristics of the microchannel surfaces. A concave flow front was observed in a microchannel with hydrophilic surface. Correspondingly, a convex flow front was observed with hydrophobic surface. For an untreated channel, a straight flow front was observed. These results would be attractive for various microfluidic chip applications, such as control of the reagent reaction through controlling liquid medium separation or control of mixing ratio in different channels.  相似文献   

12.
Behavior of microdroplets in diffuser/nozzle structures   总被引:1,自引:1,他引:0  
This paper investigates the behavior of microdroplets flowing in microchannels with a series of diffuser/nozzle structures. Depending on the imposed flow direction, the serial structures can act either as a series of diffusers or nozzles. Different serial diffuser/nozzle microchannels with opening angles ranging from 15° to 45° were considered. A 2D numerical model was employed to study the dynamics of the microdroplet during its passage through the diffuser/nozzle structures. The deformation of the microdroplet was captured using a level set method. On the experimental front, test devices were fabricated in polydimethylsiloxane using soft lithography. T-junctions for droplet formation, diffuser/nozzle structures and pressure ports were integrated in a single device. Mineral oil with 2% w/w surfactant span 80 and de-ionized water with fluorescent worked as the carrier phase and the dispersed phase, respectively. The deformation of the water droplet and the corresponding pressure drop across the diffuser/nozzle structures were measured in both diffuser and nozzle configurations at a fixed flow rate ratio between oil and water of 30. The results show a linear relationship between the pressure drop and the flow rate. Furthermore, the rectification effect was observed in all tested devices. The pressure drop in the diffuser configuration is higher than that of the nozzle configuration. Finally, the pressure measured results with droplet and without droplet were analyzed and compared.  相似文献   

13.
We study computationally the stability under gravitational and surface forces of a liquid in a circular cylindrical container with a concave spheroidal bottom for the case in which the volume of liquid is sufficiently small so that the bottom is not covered entirely. We assume the gravitational field to be directed along the axis of symmetry of the container, and for a specific container shape we compute the critical Bond number as a function of liquid volume for contact angles γ = 0°, 1°, 2°, and 4°. For the case γ = 0° we present graphically several critical equilibrium configurations and corresponding perturbation modes.  相似文献   

14.
We report the dynamics of capillary flow of oil in an open superoleophilic channel. The superoleophilic surface is fabricated by spin coating a layer of PDMS?+?n-hexane followed by candle sooting. The occurrence of various flow regimes, including the inertial, visco-inertial, and Lucas–Washburn regimes, are studied using analytical modelling as well as experiments. In case of a superoleophilic channel, much shorter inertial regime is observed as compared to that in an oleophilic channel due to the wicking of oil into the micro-roughness grooves ahead to moving bulk liquid meniscus. The study of the effect of channel aspect ratio \(\varepsilon\) on the mobility parameter \(k~\)showed that the mobility parameter \(k\) is maximum for an aspect ratio of \(\varepsilon =1.6\), which is attributed to the balance between the capillary and viscous forces. Finally, we demonstrate the application of the superoleophilic channel integrated with electrodes for impedance-based sensing of oil from an oil–water emulsion.  相似文献   

15.
Abstract

Reflectance factors of winter wheat were measured with aground-based radiometer to determine the effect of topography and sensor view angle on the diurnal behaviour of two spectral vegetation indices. Data are presented for fields with 10° slopes in a topographically complex area of central Italy. The ratio of reflectances in near-infrared (NIR) (0.78 to 0.89 μm) to red (0.63 to 0.69 μm) was less sensitive to field aspect than greenness. However, when nadir and off-nadir view angles were compared for the same aspect, greenness displayed less variability. Field aspect and view angle had less effect on both indices when solar zenith angles were small.  相似文献   

16.
This paper proposes a microfluidic channel for particle focusing that uses a microstructure on the bottom of the channel. Particles can be effectively focused in channels with bottom structures because of microvortex induced by the structure. Microchannels with top structures (top type) and bottom structures (bottom type) were fabricated. The focusing ratios in the focusing region (one-eighth of the channel width) were 86 % in top type and 89 % in bottom type at a flow rate of 1 μl/min. When the flow rate was increased to 5 μl/min, particles in top type were barely focused, whereas particles in bottom type were focused with a focusing ratio of approximately 80 %. We also evaluated the effect of a slanted angle for the microstructures. The comparative experiment was conducted with microstructures fabricated at slanted angle intervals of 20° (20°, 40°, 60°, and 80°) and 10°. The results indicated that the slanted angle (20°) required a small number of microstructures to direct the sample to the focusing region. For microstructures with a 20° slanted angle, the sample was focused after passing through 20 microstructures (10 mm). However, microstructures with an angle of 80° needed over 70 microstructures (over 23 mm) to direct the particle. In this sense, a microchannel with microstructures slanted at 20° is applicable to miniaturized devices. These results show that the microchannel with bottom structures slanted 20° can be used to effectively focus samples with advantages of applying various ranges of flow rates and miniaturizing devices.  相似文献   

17.
为改善开口式汽车风洞试验段轴向静压因数分布,应用数值仿真方法研究不同扩散角、收集口角度和流道引流方式对风洞试验段轴向静压因数以及静压梯度的影响.数值仿真得到的轴向静压因数与风洞试验结果一致,验证该计算方法的正确性.研究结果表明:流道引流方法可提高收集口附近的速度,降低当地的静压因数,导致试验段轴向静压因数的降低,从而改善流场品质.从收集口顶部或其两侧引入流道回流的方式都能降低试验段轴向静压因数,且两种方式降低效果相同.对于较大的扩散角,与15°收集口的引流相比,0°收集口的引流改善试验段轴向静压因数的效果更好;对于较小的扩散角,结果相反.  相似文献   

18.
In this work, we directly observed the evolution of air/water interfaces suspended between polydimethylsiloxane (PDMS) microlines when water droplets reduced their sizes due to evaporation. The inclined angles of the microline sidewalls were slightly larger than 90°. Two important phenomena were observed regarding the transition from Cassie–Baxter to Wenzel States. First, when a water droplet gradually shrank, an air/water interface between two neighboring microlines increased its deflection but decreased its angle with the vertical direction. In the meanwhile, the two edges of this interface were still at the top corners of the two microlines. Second, once water passed the top corners of these two microlines, it kept moving down and filled the gap. Based on these two phenomena, the equilibrium of a triple line and the uniformity of pressure inside a small water droplet, critical values of droplet sizes and Laplace pressure were derived to predict when the transition would occur on microlines. The derived theoretical relationships indicate that air/water interfaces may be stationary on both top corners and sidewalls of microlines if the inclined angles of the microline sidewalls are less than 90°. Otherwise, the interfaces can only be stationary at the top corners of the microlines. The predicted values of droplet sizes for the case that the inclined angles of these sidewalls are larger than 90° were validated by experimental results on three arrays of PDMS microlines. In addition, we also directly observed the evolution of air/water interfaces on PDMS microlines when a water droplet was slowly pressed using a glass slide. The critical values of the droplet sizes derived in the case of evaporation applied to this pressing case as well, and had a good match with experimental results on the three arrays of PDMS microlines. In addition to the cases of evaporation and pressing, the theoretical relationships derived in this work may also apply to other cases, in which Laplace pressure is gradually increased inside a liquid droplet and half sizes of the droplet are less than the capillary length of the liquid. Finally, based on developed transition criteria, a set of criteria were also proposed to design microlines for reducing the critical droplet size that triggers the transitions from Cassie–Baxter to Wenzel States.  相似文献   

19.
Fast scanning is highly desired for both ultrasound and photoacoustic microscopic imaging, whereas the liquid environment required for acoustic propagation limits the usage of traditional microelectromechanical systems (MEMS) scanning mirrors. Here, a new water-immersible scanning mirror microsystem has been designed, fabricated and tested. To achieve reliable underwater scanning, flexible polymer torsion hinges fabricated by laser micromachining were used to support the reflective silicon mirror plate. Two efficient electromagnetic microactuators consisting of compact RF choke inductors and high-strength neodymium magnet disc were constructed to drive the silicon mirror plate around a fast axis and a slow axis. The performance of this water-immersible scanning mirror microsystem in both air and water were tested using the laser tracing method. For the fast axis, the resonance frequency reached 224 Hz in air and 164 Hz in water, respectively. The scanning angles in both air and water under ±16 V DC driving were ±12°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±13.6° and ±10°. For the slow axis, the resonance frequency reached 55 Hz in air and 38 Hz in water, respectively. The scanning angles in both air and water under ±10 V DC driving were ±6.5°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±8.5° and ±6°. The feasibility of using such a water-immersible scanning mirror microsystem for scanning ultrasound microscopic imaging has been demonstrated with a 25-MHz ultrasound pulse/echo system and a target consisting of three optical fibers.  相似文献   

20.
Spontaneous capillary flow (SCF) is a powerful method for moving fluids at the microscale. In modern biotechnology, composite channels—sometimes open—are increasingly used. The ability to predict the occurrence of a SCF is a necessity. In this work, using the Gibbs free energy, we derive a general condition for the establishment of SCF in any composite microchannel of constant cross section, i.e., a microchannel comprising different wall materials and even open parts. It is shown that SCF occurs when the Cassie angle is smaller than π/2 (θ* < π/2). For a homogeneous confined channel, this relation collapses to the well-known hydrophilic contact angle θ < π/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号