首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two series of ternary semiconducting glasses with composition 65 TeO2-(35–x)CuO-xMO in mole percent (x=0, 0.5, 1, 2, 3, 4 and M stands for Co or Ni) were prepared by a melt quenching technique. The densities of annealed and unannealed disc-shaped samples and the optical energy gap of thin blown films of both series of glasses were measured, and the comparative effect of each transition metal (TM) oxide was estimated. It was found that forx=0.5 to 1 mol% andx=2 to 4mol%, the optical energy gap (E opt) was somewhat greater in TeO2-CuO-NiO than in TeO2-CuO-CoO glasses. This increase inE opt is interpreted in terms of the decreasing number of non-bridging oxygen ions with the increase of each TM oxide. NiO was found to be more effective in increasing the density than CoO in annealed copper tellurite glasses.  相似文献   

2.
Measurements of the d.c. electrical conductivity were made on 65TeO2-(35-x)CuO-x(MO) (mol %) glasses wherex=0, 0.5, 1, 2, 3, 4 and M represents nickel or cobalt. A variation in the conductivity and activation energy of the glasses is observed as CuO is replaced by NiO and by CoO. It is found that withx=0.5 to 3 mol % of NiO, the conductivity increases and the activation energy decreases due to the decrease in effective electron hopping distance between the transition metal (TM) ions. The conductivity is found to decrease with the substitution of 4 mol % of NiO and 0.5 to 4 mol % of CoO and this is attributed to the decrease in relative concentration of hopping centres because of the decrease in the hopping transitions between ions of the same element (e.g. Cu+ and Cu2+ ions) and between the ions of different TM elements (e.g. Cu+ and Ni2+, Cu+ and Co2+). This decrease in conductivity has also been described due to the formation of Ni-O-Ni, Cu-O-Ni and Co-O-Co, Cu-O-Co bridge bonds in NiO-and CoO-doped glasses respectively. The CoO-doped glasses have been found to be of a more insulating nature.  相似文献   

3.
The boundaries between the regions of single-phase and two-phase glasses were established in tellurite glass-forming systems containing B2O3 and one of the following oxides: GeO2, Fe2O3,CoO, NiO, MnO and CdO. The character of the microstructures inside and outside the regions of stable phase separation were determined by electron microscopy. It was shown that the existing microheterogeneities may either result from incomplete liquid immiscibility during melting and supercooling or be due to typical metastable separation.  相似文献   

4.
Er3+-doped tellurite glasses with molar compositions of 75TeO2–20ZnO–(5 − x) Na2O–xEr2O3 (x = 0, 0.5, 1, 2, 3, and 4 mol%) have been elaborated from the melt-quenching method. The effects of Er2O3 concentration on the thermal stability and optical properties of tellurite glasses have been discussed. From the differential scanning calorimetry (DSC) profile, the glass transition temperature T g, and crystallization onset temperature T x are estimated. The thermal stability factor, defined as ∆T = T x − T g, was higher than 100 °C. It suggests that tellurite glass exhibits a good thermal stability and consequently is suitable to be a potential candidate for fiber drawing. Furthermore, the stability factor increases with Er2O3 concentration up to 2 mol% then presents a continue decrease suggesting of beginning of crystallization of highly doped tellurite glasses. The refractive index and extinction coefficient data were obtained by analyzing the experimental spectra of tanΨ and cos∆ measured by spectroscopic ellipsometry (SE). The complex dielectric functions (ε = ε1 + iε2) of the samples were estimated from regression analysis. The fundamental absorption edge has been identified from the optical absorption spectra and was analyzed in terms of the theory proposed by Davis and Mott. The values of optical band gap for direct and indirect allowed transitions have been determined. An important decrease of the optical band gap was found after Er doping. It was assigned to structural changes induced from the formation of non-bridging oxygen. The absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach’s tail. The origin of the Urbach energy is associated with the phonon-assisted indirect transitions.  相似文献   

5.
Two series of ternary copper phosphate and copper tellurite glasses containing strontium were prepared and the electron spin resonance spectra of glasses of compositions 65 (P2O5)-(35-x) CuO-xSrO and 65 (TeO2)-(35-x) CuO-xSrO where x varied from 0–10 mol % were investigated. From the results and the chemical analyses of the samples it was found that a reduction in the copper (II) signal intensity in the glass samples as the proportion of alkaline earth metal is raised, corresponds to an increase in the reduced valency ratio, C, in the glasses.  相似文献   

6.

In this study, zinc–silica–borate glass structures doped with rare earth (RE) oxides Eu2O3 and Nd2O3 were synthesized with classical melting–quenching technique. 60ZnO–10SiO2–(30 – x)B2O3:xRE (x?=?0, 0.5, 1, 1.5 mol%) composition was chosen as the structure. The doping effect of two different rare earth oxides (individually) at different ratios was investigated according to the structural, physical, and optical properties of the glass structure. Structural properties of the synthesized glasses were determined with Fourier transform infrared (FTIR) device, and densities (ρ) and molar volumes (Vm) of the glasses were measured with Archimedes method, and optical properties were determined with UV–Visible (UV–Vis-NIR) device. FTIR results show that BO3 units increased in all RE-doped glasses. While densities of the synthesized glasses varied between 3.755 and 3.941 g cm??3, indirect bandgaps varied between 3.219 and 3.645 eV. The glass with the highest transmittance was the 1% Eu2O3-doped glass with a transmittance of 84%. While band edges shifted slightly toward short wavelengths in glasses doped with Nd2O3, they shifted to longer wavelengths in glasses doped with Eu2O3.

  相似文献   

7.
In this paper, new highly Tm3+-doped tellurite glasses with host composition 75TeO2-xZnF2-yGeO2-12PbO-3Nb2O5 [x(5-15), y(0-5) mol%] are presented and compared to the Tm-doped tellurite glasses based on the traditional host composition: 75TeO2-20ZnO-5Na2O mol%. Enhanced quantum efficiency from 3F4 level was observed for the proposed glasses and thermal stability and viscosity values make them suitable for optical fiber drawing. Besides the host composition, substantial influence of Tm3+ concentration on luminescence and lifetime of excited 3F4 and 3H4 states were discussed.  相似文献   

8.
Measurements of d.c. electrical conductivity were made on 65TeO2-(35 -x)CuO-xLu2O3 (mol%) glasses with x=0, 1, 2, 3, 4. The experimental results show that whenx is changed from 1 to 2 mol%, the conductivity increases due to the additional electrons obtained by the oxidation of TeO2 as well as due to the Cu+ Cu2+ transition under the effect of interelectronic repulsion in the 4f shell of the lutetium present in the glass. Whenx is increased to greater than 2 mol%, the conductivity decreases because hopping is inhibited due to the formation of oxygen bridge associates or because of the strong ligand repulsive field of lutetium indicating its non-reactivity in the glassy network. The conductivity has a distinct maximum atx=2.  相似文献   

9.
The results of the investigation of the structure of Ni(II) ions in x LiF-(100–x) B2O3 glasses with 5x30 mol% using ESR and optical absorption techniques are reported. Electron spin resonance spectra of Ni(II) ions doped glasses exhibit a symmetric line shape centred at g=2.36±0.01 at room temperature. Remarkable changes have been observed in the intensity and line shape with changes in concentration of LiF and when the spectra were recorded in the temperature range 123–453 K. The optical absorption spectra were recorded at room temperature. The observed bands have been interpreted in terms of ligand field theory. From the spectral analysis, the crystal field parameter, Dq, and the Racah interelectronic repulsion parameters, B and C, have been evaluated. By correlating the ESR and optical absorption data, the covalency parameter has been evaluated.  相似文献   

10.
Co2+ and Ni2+ ions doped 20ZnO + xLi2O + (30 ? x) K2O + 50B2O3 (5  x  25) mol% glasses are prepared using melt quenching technique. Structural changes of the prepared glasses by addition of transition metal oxides, CoO and NiO are investigated by UV–vis–NIR, FT-IR spectroscopy and XRD. The XRD pattern indicates the amorphous nature of prepared glasses. FT-IR measurements of the all glasses revealed that the network structure of the glasses are mainly based on BO3 and BO4 units placed in different structural groups in which the BO3 units being dominant. The optical absorption spectra suggest the site symmetry of Co2+ and Ni2+ ions in the glasses are near octahedral. Crystal field and inter-electronic repulsion parameters are also evaluated. The optical band gap and Urbach energies exhibited the mixed alkali effect. Various physical parameters such as density, refractive index, optical dielectric constant, polaron radius, electronic polarizability and inter-ionic distance are also determined.  相似文献   

11.
Dot patterns of refractive indices were formed by the laser pulse irradiation on the tellurite glasses. The ternary tellurite glasses of TeO2-Na2O-Al2O3, TeO2-Na2O-GeO2 and TeO2-Na2O-TiO2 doped with 2 mol% of CoO were irradiated by a femtosecond pulse laser beam (800 nm) or by a green light beam (532 nm) from a second harmonic generator of a Q switch pulse YAG laser. The refractive index map of the glass was composed with an He-Ne laser beam by an scanning ellipsometric technique at a resolution of 100 m × 50 m, indicating that the spots possessing refractive index lower by about 0.05–0.38 than the surroundings were formed at the region irradiated by the laser beam. The irradiation of the femtosecond laser beam generated the dot patterns roughly equivalent to the beam size. The change of refractive index could be tunable by adjusting laser power, suggesting that the process could be applied to optical recording.  相似文献   

12.
FT-IR, Raman and UV–VIS experimental results were presented for xCuO·(100-x)[3Bi2O3·B2O3] glass system, where 0 ≤ x ≤ 50 mol%. The FT-IR measurements indicate the presence in xCuO·(100-x)[3Bi2O3·B2O3] glasses of BO3, BO4 units, BiO3 pyramidal and distorted BiO6 octahedral units and their dependence of CuO content. The Raman scattering data indicate that for 0 ≤ x ≤ 10 mol% the structure of studied glasses consist from BiO3 pyramidal and distorted BiO6 octahedral units, ring and chain type of metaborate groups, ortoborate and pyroborate groups. For higher concentration the Raman spectra suggest that the structure become more disordered. The FT-IR and Raman bands characteristic for CuO were not directly evidenced, but the absorption bands specific for the glass matrix are influenced by the presence of copper ions in the glass network structure. The optical absorption confirms the presence of Cu2+ in the CuO doped 3Bi2O3·B2O3 glass matrix.  相似文献   

13.
The crystallization of pure tellurite glass during various heating rates was studied. The activation energy for crystallization was 115 × 1022 eV mol–1. The glass transformation, T g, starting crystallization, T x, crystallization, T c and melting temperatures, T m, have been reported for binary tellurite glasses of the form (1 – x) TeO2xAnOm [AnOm = MnO2, Co3O4 and MoO3]. Among many different parameters of the glass forming potential the two-thirds rule, T g/T m, the glass stabilization range, T= T xT g, and the glass forming tendency, K g= (T cT g)/(T mT c), are reported for the first time for tellurite glasses.  相似文献   

14.
The spectroscopic properties of tellurite glasses of composition (in mol%) TNKNd: (70 − x)TeO2-15Nb2O5-15K2O-xNd2O3 (x = 0.1, 1.0, 1.5, 2.0 and 2.5) and TNLNd10: 69TeO2-15Nb2O5-15Li2O-1.0Nd2O3 and lithium metaborate glass of composition LBNNd10: 89LiBO2-10Nb2O5-1.0Nd2O3 have been investigated using absorption and emission spectra and decay curve analysis. An energy level analysis has been carried out considering the experimental energy positions of the absorption and emission bands, using the free-ion Hamiltonian model. The spectral intensities have been calculated by using the Judd-Ofelt theory and in turn the radiative properties such as radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes have been estimated. The decay curves at the lower concentrations are exponential while they show a non-exponential behavior at higher concentrations (?1.0 mol%) due to energy transfer processes. The effective lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration for all the glasses under investigation. The non-exponential decay curves have been well-fitted to the Yokota-Tanimoto model with = 6, indicating that the nature of energy transfer is of dipole-dipole type and energy migration also plays an important role. The results obtained have been compared with Nd3+-doped phosphate, fluorophosphate, lead borate, tellurite, germanate and silicate glasses and Nd3+-doped YAG ceramic and Ca2Nb2O7 crystals.  相似文献   

15.
Yolk–shell nanostructures have received great attention for boosting the performance of lithium‐ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li+ ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co‐doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni2O3, Mn3O4) through combining pyrolysis with an oxidation method is reported herein. The as‐made TMO@BNG exhibits the TMO‐dependent lithium‐ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium‐ion storage capacity of 1554 mA h g?1 at the current density of 96 mA g?1, good rate ability (410 mA h g?1 at 1.75 A g?1), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability.  相似文献   

16.
The structure of [80TeO2 + (20–x)MoO + xNd2O3] glasses, with x = 0, 4, 6, 10 and 12 mol%, is studied in this work. Raman scattering in the spectral range (−2000 to 3500 cm−1) and IR absorption spectra have been measured for crystalline TeO2 and glasses, and their assignments were discussed and compared. Many vibrational modes were found active in both Raman and IR and their assignments for crystalline TeO2 and for the glasses were discussed in relation to the tetragonal structure of crystalline α -TeO2. Nd2O3 was found to completely eliminate diffuse scattering and enhance the Raman scattering intensity. Anti-stokes Raman bands in the range −1460 cm− 1 to −1975 cm− 1 were observed for both (30Li2O + 70B2O3+ xNd2O3) glasses and [80TeO2 + (20−x)MoO + xNd2O3] glasses and were attributed to some emission processes due to the doping of the glasses with Nd2O3.  相似文献   

17.
Hexagonal ferrites in the BaO-Fe2O3- CoO system have the M, Y, Z, W and S structures. BaFe12–x CO x O19–x prepared by the glass synthesis method crystallizes with the M structure but forx > O a few CoFe2O4 (S) crystallizes at first and then is located at the core of the recovered platelets of hexaferrite M. BaFe16 x CO2 +x O27-x F x prepared in the saure way has not the W structure but is a mixture of cobalt doped M and S.  相似文献   

18.
Mode-mismatched Thermal Lens (TL) measurements were performed in 70TeO2–19WO3–7Na2O–4Nb2O5 (% mol) tellurite glasses doped with either Er3+ or Tm3+ and co-doped with Er3+/Tm3+ ions. Thermo-optical parameters (D, K, ds/dQ and ds/dT) were obtained in function of thulium concentrations (0.39–1.6) × 10 20 ions/cm3. For Er3+/Tm3+ co-doped tellurite glasses, D and K values are practically independent of the Tm3+ concentrations used in this study. The average values of D and ds/dT obtained for tellurite glasses are: (3.1 ± 0.2) × 10−3 cm2/s and (16 ± 3) × 10−6 K−1, respectively.  相似文献   

19.
Three series of glasses, of the composition 20 MO (M = Ca, Pb, Zn)–40 Sb2O3–(40 − x) B2O3:xV2O5, with six values of x ranging from 0 to 1 mol% were prepared. The samples were characterized by X-ray diffraction, scanning electron microscopy, EDS and differential scanning calorimetric techniques. The comparison of DSC data among the three series has indicated high glass forming ability for ZnO mixed glasses. Dielectric properties over a range of frequency and temperature, optical absorption, ESR spectra at room temperature and IR spectra have been investigated. The variations observed in all these properties due to different modifiers as a function of the concentration of V2O5 have been analyzed in the light of different oxidation states and environment of vanadyl ions in these glasses. The analysis of these results indicated that the ZnO mixed glasses are more stable against devetrification and possess high insulating strength when compared with PbO and CaO mixed glasses.  相似文献   

20.
Characterizations of (50 – x) P2O5-x M-50V2O5 (M = Bi2O3, Sb2O3, and GeO2 and x=0 to 45 mol% M) and P2O5-Bi2O3 semiconducting oxide glasses have been made from studies of electrical conductivities (both a.c. and d.c.) in the temperature range 77 to 400 K. All these glasses showed some interesting non-linear variation of d.c. and a.c. conductivity, together with other properties for particular values of M (between 20 and 30 mol% M). Because the non-vanadate (1–x) P2O5-x Bi2O3 glasses also showed similar conductivity anomaly (minimum) around 25 mol% Bi2O3 with a corresponding maximum in the activation energy (W), it is concluded (in contradiction to earlier suggestions) that not only the ratio (= V5+/V4+) but also the network-former ions in the vanadate glasses make a substantial contribution to the anomalous concentration variation of the physical properties of these glasses. The electrical conduction in these glasses is found to be mainly due to hopping of polarons in the adiabatic approximation. At low temperature, the d.c. conductivity obeys Mott's T –1/4 behaviour. The a.c. conductivity obeying the general s law (exponent s lying between 0.85 and 0.98) supports the theory based on the hopping over the barrier model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号