共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
前馈神经网络中的反向传播算法及其改进:进展与展望 总被引:16,自引:0,他引:16
BP网络和算法是使用最广泛的神经网络模型之一,但由于它使用梯度算法,因而存在固有的局部极小及收敛速度慢等问题。本文首先回顾了BP算法的产生和发展过程,之后对BP算法因有的特点进行了阐述,最后针对原基本BP算法的缺陷对各种改进方法进行了全面并指出了这一研究中的有关问题。 相似文献
3.
多层前馈神经网络改进算法及其应用 总被引:9,自引:0,他引:9
从前馈神经网络原理分析出发,提出一种速率适应因子方法用于对多层前馈神经网络中BP算法的改进,并将改进的算法用于XOR问题的学习及多重XOR分类器问题的学习。仿真结果表明,改进后BP的算法可显著加速网络的学习速度,并且学习过程具有良好的收敛性及较强的鲁棒性。 相似文献
4.
针对基于反向传播神经网络(BPNN)的软件质量预测模型存在收敛慢、模型精度不高的问题,提出一种基于蚁群算法优化BPNN的软件质量预测(SQP-ACO-BPNN)方法。首先,选择软件质量评价指标,确立软件质量评价体系;其次,采用BPNN构建初始软件质量预测模型,并利用蚁群优化(ACO)算法确定若干网络结构、网络初始连接权值和阈值;再次,给出网络结构评价函数,选择神经网络模型的最佳结构、网络初始连接权值和阈值;最后,通过BP算法训练该网络,得到最终的软件质量预测模型。在机载嵌入式软件质量预测数据上的实验结果表明,优化后的BPNN模型有效提高了预测的准确率、精确率、召回率和F1值,并且模型能够更快收敛,验证了SQP-ACO-BPNN方法的有效性。 相似文献
5.
文章探讨应用反向传播算法建立一个能预测、推理、诊断、分析并确定污染源的生态系统环保神经网络,这种网络是一个具有自适应学习能力的模式识别系统,能从经验中学习适合不同需要的判别函数,是一种有指导的训练。 相似文献
6.
神经网络灵敏度分析对网络结构设计、硬件实现等具有重要的指导意义,已有的灵敏度计算公式对权值和输入扰动有一定限制或者计算误差较大。基于Piché的随机模型,通过使用两个逼近函数对神经网络一类Sigmoid激活函数进行高精度逼近,获得了新的神经网络灵敏度计算公式,公式取消了对权值扰动和输入扰动的限制,与其他方法相比提高了计算精度,实验证明了公式的正确性和精确性。 相似文献
7.
8.
9.
前馈神经网络的新算法及其收敛性 总被引:1,自引:0,他引:1
从一般前馈神经网络模型出发,构造出一组关于权重的非线性方程组,给出不同于传统BP算法的新型神经元算法。理论证明了该算法的收敛性,从而避免了BP算法的局限性。 相似文献
10.
1.引言前馈神经网络是目前应用最广的一种神经网络,其学习算法是由Rumelhart等人于1986年提出的反向传播(Back Propagation,BP)算法,故这种神经网络也常被称为BP神经网络。人们对前馈神经网络学习算法的研究,以前主要着重对各层之间联接权值优化的研究,如BP算法以 相似文献
11.
为了网络流量预测准确性,提出一种蚁群算法(ACO)优化BP神经网络(BPNN)的网络流量混沌预测模型(ACO-BPNN)。对网络流量时间序列进行重构,将BPNN参数作为蚂蚁的位置向量,通过蚁群信息交流和相互协作找到BPNN最优参数,建立网络流量最优预测模型,并采用实测网络流量数据进行有效性验证。结果表明,ACO-BPNN能够准确刻画网络流量变化特性,提高网络流量的预测准确性。 相似文献
12.
13.
基于蚁群算法的Hopfield神经网络在多空间站路径规划的应用研究* 总被引:1,自引:0,他引:1
空间机器人每次携带的燃料有限,提高空间机器人的工作效率以及延长其在轨寿命研究具有重要意义,分析了空间机器人多空间站访问问题。为了弥补传统路径规划方法容易陷入局部极小点的问题,提出利用基于蚁群算法的Hopfield神经网络来解决空间机器人多空间站访问问题。仿真实验结果表明,基于蚁群算法的Hopfiled神经网络用于多空间站访问问题,收敛速度要比Hopfield神经网络快,且比Hopfield神经网络易于跳出局部极点,该算法有利于解决多空间站路径规划问题。 相似文献
14.
为了科学准确地预测近期公交客流量,根据近期公交客流量预测受到多因素影响以及非线性的特点,利用随机灰色变量描述预测系统的不确定性,建立了随机灰色预测模型以及基于蚁群算法的递归神经网络模型,在此基础上,提出了一种基于随机灰色蚁群神经网络的近期公交客流量预测方法。最后以铜陵市为例,对模型的预测精度和有效性进行了分析。结果表明,基于蚁群算法的递归神经网络模型的预测精度不但高于其他单一预测模型,而且明显优于其他传统组合预测模型,能很好地反映事物发展的规律,能够指导公交经营管理者近期的决策行为,有效地改善了预测精度。 相似文献
15.
曹邦兴 《计算机工程与应用》2010,46(2):224-226
提出了一种基于蚁群算法的径向基函数神经网络,用它来进行地下水位预测,既具有神经网络广泛映射能力,又具有蚁群算法全局寻优、分布式计算等特点。实验表明,蚁群算法与径向基函数神经网络相融合能达到良好的预测效果。 相似文献
16.
针对基本蚁群算法在求解能力方面的不足,提出一种基于群体分类的自适应蚁群算法.该算法在智能蚁群的基础上引入随机蚁群以便扩大搜索空间,不同蚁群实行各自不同的搜索前进策略和信息更新机制,并可通过调节随机蚁群与智能蚁群的比例来控制收敛速度.多个旅行商问题的仿真实验证明,相比ACS、MMAX算法,该算法的求解能力得到了改进. 相似文献
17.
18.
通过对比航线配船问题与TSP问题的异同,成功将蚁群算法(ACA)用于航线配船,为求解大规模非线性整数规划问题提供了一条新的途径。 相似文献
19.
曲线是GIS空间数据的重要空间目标之一,也是描述面和体的基础。当前的GIS产品中,描述GIS空间曲线使用的是数学和插值方法,并使其可视化。用蚁群算法对GIS空间曲线进行描述,使其具有智能的性质。通过理论分析和模拟实验,表明用蚁群算法描述GIS空间曲线乃至其他空间目标,是可行和有效的。 相似文献
20.
基于蚁群算法和BP神经网络的信道分配策略的研究 总被引:2,自引:0,他引:2
研究无线传感器网络信道分配策略的主要目标是提高网络吞吐量和容量,减小网络的传输时延,最大限度的利用有限的网络带宽资源。多信道MAC协议的应用,可以有效地提高网络通信的可靠性和吞吐量,以及解决由于信道受干扰而造成的网络瘫痪等问题。根据无线传感器网络多信道的特点提出了一种基于蚁群算法的动态反馈负载均衡信道分配策略。本策略首先应用BP神经网络对信道负载情况进行预测,然后通过基于蚁群算法的负载均衡算法对信道进行筛选,最后利用最大离散化算法进行信道分配。在NS2平台下对所设计的协议进行了仿真实现,并与应用最为广泛的多信道MMAC协议以及SMAC进行了对比分析。根据仿真结果可知,本文设计的MAC协议在网络吞吐量、网络传输时延等性能方面比MMAC协议及SMAC都有了很大程度的提升。可以有效减小网络传输时延,提高网络吞吐量和抗干扰能力。 相似文献