首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simplified and an eco-friendly approach to develop polychloroprene rubber composites with high electrical conductivity is reported. The usage of room temperature ionic liquid, 1-butyl 3-methyl imidazolium bis(trifluoromethylsulphonyl)imide and a low concentration (5 phr) of commercial grade multi-walled carbon nanotubes (MWCNTs) in polychloroprene rubber exhibited an electrical conductivity of 0.1 S/cm with a stretchability >500%. The physical (cation-pi/pi-pi) interaction between the ionic liquid and the MWCNTs is evidenced by Raman spectroscopy. Transmission electron microscopy images exhibit an improved dispersion of the BMI modified tubes in matrix at various magnification scales. The dependency of dynamic properties on the concentration of ionic liquid at constant loading of nanotubes supports the fact that ionic liquid assists in the formation of filler-filler networks. The tensile modulus of 3 phr loaded modified MWCNT/CR composite is increased by 50% with regard to that of the unmodified MWCNT/CR composite. Mooney-Rivlin plot displays the existence of rubber-filler interactions.  相似文献   

2.
Nanocomposites of poly(methyl methacrylate) (PMMA) containing various multi-walled carbon nanotubes (MWCNT) contents were prepared using melt mixing. Several techniques were employed to study the influence of the MWCNT addition on the thermal, mechanical, electrical and dielectric properties of the PMMA matrix. The electrical percolation threshold (pc) was found to be 0.5 vol.% by performing AC and DC conductivity measurements. Significantly high conductivity levels (σdc) were achieved: σdc exceeds 10−2 S/cm already at 1.1 vol.%, the criterion for EMI shielding (σdc > 10−1 S/cm) is fulfilled at 2.9 vol.%, and the highest loaded sample (5.2 vol.%) gave a maximum value of 0.5 S/cm. Dielectric relaxation spectroscopy measurements in broad frequency (10−1−106 Hz) and temperature ranges (−150 to 170 °C) indicated weak polymer-filler interactions, in consistency with differential scanning calorimetry and dynamic-mechanical analysis findings. Weak polymer-filler interactions and absence of crystallinity facilitate the achievement of high conductivity levels in the nanocomposites.  相似文献   

3.
We show how an alternating electric field can be used to align silver micron or sub-micron sized particles into microscopic wires in diverse polymer matrices based on the dielectrophoretic effect. The electric field is set by an electrode pair and the wires form conductive pathways through the matrix, bridging these electrodes electrically. The matrix is cured after alignment, locking wires in permanent pathways within the polymer. The wires are then characterized by ac impedance spectroscopy. The alignment can take place either in-plane or out-of-plane, and yields a directional conductivity in the alignment direction parallel to the electric field lines. The samples can be centimeters wide containing thousands of wires in parallel, but even an individual wire can be grown and controlled. The initial mixture contains less than 1 vol.% of silver and is an electrical insulator. The bulk conductivity enhancement, due to the alignment, may be 5 orders of magnitude, typically from 1 × 10−5 S/m to 1 S/m as the particle alignment converts the sample conductivity from polymer dominated to silver dominated. For the aligned isolated silver wires, the jump in conductivity, confined to the volume filled by the wire can be seen to be as high as 9–10 orders of magnitude, resulting in conductivities as high as 1 × 105 S/m, thus approaching those of pure metal. This technique offers new ways on how e.g. conducting polymer composites and conducting glues could be produced.  相似文献   

4.
In this paper, electrical and mechanical properties of Poly (p-phenylene sulfide) (PPS)/multi-wall carbon nanotubes (MWNTs) nanocomposites were reported. The composites were obtained just by simply melt mixing PPS with raw MWNTs without any pre-treatment. The dispersion of MWNTs and interfacial interaction were investigated through SEM &TEM and Raman spectra. The rheological test and crystallization behavior were also investigated to study the effects of MWNTs concentration on the structure and chain mobility of the prepared composites. Though raw MWNTs without any pre-treatment were used, a good dispersion and interaction between PPS and MWNTs have been evidenced, resulting in a great improvement of electrical properties and mechanical properties of the composites. Raman spectra showed a remarkable decrease of G band intensity and a shift of D bond, demonstrating a strong filler–matrix interaction, which was considered as due to π–π stacking between PPS and MWNTs. The storage modulus (G′) versus frequency curve presented a plateau above the percolation threshold of about 2–3 wt% with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behavior. Meanwhile, a conductive percolation threshold of 5 wt% was achieved and the conductivity of nanocomposites increased sharply by several orders of magnitude. The difference between electrical and rheological percolation threshold, and the effect of critical percolation on the chain mobility, especially on crystallization behavior of PPS, were discussed. In summary, our work provides a simple and fast way to prepare PPS/MWNTs nanocomposites with good dispersion and improved properties.  相似文献   

5.
This paper reports on the development of electrically conductive nanocomposites containing multi-walled carbon nanotubes in an unsaturated polyester matrix. The resistivity of the liquid suspension during processing is used to evaluate the quality of the filler dispersion, which is also studied using optical microscopy. The electrical properties of the cured composites are analysed by AC impedance spectroscopy and DC conductivity measurements. The conductivity of the cured nanocomposite follows a statistical percolation model, with percolation threshold at 0.026 wt.% loading of nanotubes. The results obtained show that unsaturated polyesters are a matrix suitable for the preparation of electrically conductive thermosetting nanocomposites at low nanotube concentrations. The effect of carbon nanotubes reaggregation on the electrical properties of the spatial structure generated is discussed.  相似文献   

6.
In the present work, in situ polymerizations of sulfonated polyoxadiazole through a polycondensation reaction of A–A (hydrazine sulphate) and B–B (aromatic dicarboxylic acid) monomers with carbon nanotubes in poly(phosphoric acid) were performed. The structures of composites were characterized by elemental analysis, Raman and FTIR spectroscopy. The sulfonated polyoxadiazole composites with high molecular weight (in the order of magnitude of 105 g/mol) are soluble in organic solvents and can be cast as dense films. They exhibit good mechanical properties (storage modulus up to around 4 GPa at 300 °C) and an electrical conductivity in the order of 10−5 S m−1. The composites can be used at temperatures as high as 470 °C.  相似文献   

7.
Nanocomposites containing four different polyamide 12 (PA12) types and three grades of multiwalled carbon nanotubes (MWNTs) were prepared via small-scale melt processing to study the effect of different MWNTs and the influence of polymer properties on the dispersion of the fillers and the electrical properties of the composites. Under the selected mixing conditions the lowest electrical percolation threshold of 0.7 wt.% was found for Nanocyl™ NC7000 in low viscous PA12. Moreover, big influences of the end group functionality (acid or amine excess) and the melt viscosity of the matrix were found. Composites of PA12 with acid excess showed lower percolation thresholds than those based on amine terminated materials. At constant end group ratio low viscous matrices resulted in lower percolation thresholds than high viscous materials. The best MWNT dispersion was obtained in both high viscous PA12 composites. In these systems the mixing speed was varied indicating an optimum concerning electrical conductivity at 150 rpm as compared to 50 and 250 rpm.  相似文献   

8.
The ionic transport in thin film plasticized polymer electrolytes based on polyvinylidene fluoride (PVdF) as the polymer host, silver triflate (AgCF3SO3) as salt and ethylene carbonate (EC) as plasticizer prepared by solution casting technique has been reported. Addition of silver triflate has resulted in an increase in the room temperature (298 K) electrical conductivity of the polymer from 10−6 to 10−5 S cm−1 whereas incorporation of EC as the plasticizer has further enhanced the conductivity value by an order of magnitude to 10−4 S cm−1 owing to the possible decrease in crystallinity of the polymer matrix as revealed by the detailed temperature-dependent complex impedance, silver ionic transference number, Fourier transform infrared and X-ray diffraction measurements.  相似文献   

9.
A novel high performance conductive material with excellent comprehensive properties was prepared by melt-blending, and its performances were adjusted by controlling the selective location of carbon black (CB) in poly(ether ether ketone) (PEEK)/thermoplastic polyimide (TPI) matrix. With increasing the CB loadings, the morphology of PEEK/TPI blends changed from sea-island to co-continuous structure, which was owing to the selective location of CB in TPI phase. Notably, with the selective location of CB in the induced co-continuous PEEK/TPI matrix, the electrical percolation threshold was reduced to 5 wt%, which was significantly lower than that of binary PEEK/CB (9 wt%) and TPI/CB (10 wt%) composites. And the electrical conductivity of ternary PEEK/TPI/CB composites was 104 to 106 times higher than that of binary composites at identical 7.5 wt% CB loading, which was attributed to the double percolation effect. Moreover, the incorporation of CB could improve the thermal and mechanical properties effectively.  相似文献   

10.
Two of the limitations of carbon nanotube (CNT) polymer composites have been the low volume fraction of nanotubes and inadequate load transfer from the polymer to the stiff CNT. Here, we have utilized functionalized mats of double-walled nanotubes (DWNT) to obtain 10 wt.% DWNT in an epoxy matrix, with strength approaching those of quasi-isotropic carbon fiber composites. We used the transmission FTIR technique with in situ loaded specimens to monitor spectral shift per unit applied stress for understanding load transfer behavior at the nanotube–epoxy interface. Tests show that in most cases a tensile stress causes negative FTIR peak shift in the neat epoxy, but this behavior is not always observed for the epoxy matrix in the composite. The FTIR data can be used successfully to estimate the average matrix stress in the composite and thereby the average stress in the nanotubes. In situ Raman studies using the G′ peak are also conducted to obtain complementary information on average tensile stress in the DWNT in the loading direction. The shift response is found to be ∼37 cm−1/GPa.  相似文献   

11.
We report on the preparation of nanocomposites consisting of biofunctionalized single-walled carbon nanotubes (BF-SWCNTs) reinforcing an ultraviolet curable epoxy polymer by means of biotin–streptavidin interactions. The as-produced laser ablation SWCNTs are biofunctionalized via acid oxidization based purification process and non-covalent functionalization using surfactant, followed by grafting the resulting nanotubes with biomolecules. The biotin-grafted nanotubes are capable of interacting with epoxy groups in presence of streptavidin molecules by which chemical bridges between BF-SWCNTs and epoxy matrix are formed. The biomolecules grafted to the nanotubes surface not only facilitate the load transfer, but also improve the nanotube dispersion into the epoxy matrix, as observed by optical imaging and scanning electron microscopy. Mechanical characterization on the nanocomposite microfibers demonstrates considerable enhancement in both strength (by 76%) and modulus (by 93%) with the addition of only 1 wt.% of BF-SWCNTs. The electrical measurements reveal a clear change in electrical conductivity of nanocomposite microfibers reinforced with 1 wt.% of BF-SWCNTs in comparison to the microfibers containing solely purified carbon nanotubes. These multifunctional nanocomposite materials could be used to fabricate macro and microstructures for a wide variety of applications such as high strength polymer nanocomposite and potential easily-manipulated biosensors.  相似文献   

12.
The percolation behaviour of the hybrid composites of polypropylene glycol (PPG) filled with multiwalled carbon nanotubes (MWCNTs) and Laponite RD (Lap), or with MWCNTs and organo-modified Laponite (LapO) was studied by wide angle X-ray diffraction (XRD), microscopic image analysis, and electrical conductivity measurements. Cetyltrimethylammoniumbromide (CTAB) was used as an organo-modifier of Laponite. The Lap and LapO were found to have rather different affinity to PPG. XRD data have evidenced finite PPG integration inside Lap and complete exfoliation of LapO stacks in a PPG matrix. In PPG + MWCNT composites containing no Lap or LapO, increase of MWCNT concentration above the critical value Cp ∼ 0.4 wt% resulted in percolation. The value of the percolation threshold, Cp, was practically the same for hybrid PPG + MWCNT + Lap composites. However, it noticeably decreased (Cp ∼ 0.2 wt%) in PPG + MWCNT + LapO materials. The observed behaviour of the percolation threshold may be attributed to the effects exerted by LapO on the size of MWCNT aggregates, state of their dispersion and homogeneity of their spatial distribution.  相似文献   

13.
Cu-4.5Cr and Cu-4.5Cr-3Ag (in wt%) alloys without or with 10 wt% nanocrystalline Al2O3 and ZrO2 dispersion have been synthesized by mechanical alloying or milling and consolidated by laser assisted sintering in Ar atmosphere. Microstructural characterization by scanning and transmission electron microscopy and phase analysis by X-ray diffraction suggest that the alloyed matrix undergoes significant grain growth after sintering while the dispersoids retain their ultrafine size and uniform distribution in the matrix. The dispersion of nano-Al2O3 is more effective than that of nano-ZrO2 in enhancing the mechanical properties due to the smaller initial particle size of Al2O3 than that of ZrO2. In general, laser sintering of mechanically alloyed Cu-4.5Cr and Cu-4.5Cr-3Ag alloys with 10 wt% nanocrystalline Al2O3 at 100 W laser power and 1-2 mm s−1 scan speed yields the optimum combination of high density (7.1-7.5 mg m−3), hardness (165-225 VHN), wear resistance and electrical conductivity (13-20% IACS).  相似文献   

14.
The cost efficient expanded graphite (EG) filled polyetheretherketone (PEEK) nanocomposites were prepared by hot pressing, which exhibited an electrical conductivity percolation threshold of 1.5 wt%. The electrical conductivity of the 1.5 wt% nanocomposite increased approximately eleven orders of magnitude than that of pure PEEK. The conductivities of 5 wt% and 10 wt% nanocomposites were increased to about 3.24 S cm−1 and 12.3 S cm−1, respectively. Scanning electron microscope showed 3-dimensional conductive network of EG across the PEEK matrix. The significant increase in electrical conductivity of the nanocomposites leads to the tremendous increase in electromagnetic interference shielding effectiveness.  相似文献   

15.
Composites of Kraton-D® 1102 BT (a styrene–butadiene–styrene block copolymer) and multi-walled carbon nanotubes (MWCNTs) were prepared by melt mixing. The composites were characterized by electrical conductivity measurements (Coleman’s method), mechanical properties (DMA and stress–strain tests), thermal stability (thermogravimetry) and morphology of dispersion (SEM). Finally, the resulting composites were compared with those made by the solution casting method. The results showed a strong influence of the preparation methodology on the final properties of the composites due to changes in morphology. Composites prepared by casting showed a higher electrical conductivity than extruded ones; the composites with 6 wt.% of MWCNT prepared by extrusion presented conductivity of the same order of magnitude as the composite with 1 wt.% of MWCNT prepared by casting – 10−3 to 10−4 S cm−1. However, the extruded samples presented better mechanical properties than the casting ones.  相似文献   

16.
Polyaniline (PANI) is an important conducting polymer and has drawn much attention for its inexpensiveness and chemical stability in the conducting state but its conductivity is rather low. Another well-known conducting polymer is polypyrrole (PPy) with a much higher electrical conductivity but it is hard to prepare films using PPy alone due to its poor film-forming ability. In this work, novel polypyrrole-nanotube (PPy-NT)/polyaniline (PANI) composite films are prepared via a facile solvent-evaporation method. The influence of the PPy-NT content is examined on the film structure, morphology, electrical and mechanical properties. It is shown that PPy nanotubes (PPy-NTs) are uniformly distributed in the PANI matrix. The electrical conductivity is greatly enhanced by 10.2 times by the addition of 10 wt.% PPy nanotubes. Moreover, the mechanical ductility is significantly increased by the addition of PPy nanotubes.  相似文献   

17.
In recent years, efforts to prepare flexible highly conductive polymer composites at low temperatures for flexible electronic applications have increased significantly. Here, we describe a novel approach for the preparation of flexible highly conductive polymer composites (resistivity: 2.5 × 10−5 Ω cm) at a low temperature (150 °C), enabling the wide use of low cost, flexible substrates such as paper and polyethylene terephthalate (PET). The approach involves (i) in situ reduction of silver carboxylate on the surface of silver flakes by a flexible epoxy (diglycidyl ether of polypropylene glycol) to form highly surface reactive nano/submicron-sized particles; (ii) the in situ formed nano/submicron-sized particles facilitate the sintering between silver flakes during curing. Morphology and Raman studies indicated that the improved electrical conductivity was the result of sintering and direct metal-metal contacts between silver flakes. This approach developed for the preparation of flexible highly conductive polymer composites offers significant advantages, including simple low temperature processing, low cost, low viscosity, suitability for low-cost jet dispensing technologies, flexibility while maintaining high conductivity, and tunable mechanical properties. The developed flexible highly conductive materials with these advantages are attractive for current and emerging flexible electronic applications.  相似文献   

18.
Fabricating carbon nanotube-based composites requires high degree of dispersion of carbon nanotubes into a polymer matrix. The widely used approaches reported in open literature for such a purpose are usually complicated and high-cost. Herein, we found that Chinese ink could be used to prepare composites composed of multi-walled carbon nanotubes (MWCNTs) and polyvinyl alcohol (PVA). The Chinese ink acted as a solvent and a dispersant. The MWCNT-ink-PVA ternary composite possessed both high flexibility and high electrical conductivity, with an optimized electrical conductivity of 8.17 S cm−1. This simple method is believed to be applicable to other nanosacle carbon materials.  相似文献   

19.
Polyamide 6 (PA6) and polyamide 6.6 (PA66) were filled with multiwalled carbon nanotubes (MWNT) using small scale melt mixing under variation of processing conditions, including temperature, rotation speed, and mixing time. In PA66 an electrical percolation threshold of 1 wt% MWNT was found which is lower than that of PA6 at 2.5–4 wt%. In both cases mixing conditions influenced strongly the dispersion and distribution of CNT and the electrical volume resistivity, whereas crystallisation behaviour was only slightly changed. With increasing mixing energy input remaining agglomerates were less in number and smaller, leading to better dispersion. On the other hand, in samples containing 5 wt% MWNT in PA6 electrical volume resistivity showed a minimum at a quite low energy input and then increased considerably with further input of mixing energy. This increase may be related to MWNT breaking during mixing and encapsulation of MWNT by the polyamide chains.  相似文献   

20.
《Materials Research Bulletin》2003,38(6):1063-1072
The new quaternary selenophosphate phases AMP2Se6 (A=Cu, Ag and M=Bi, Sb) were synthesized by ceramic methods at 1023 K. These phases were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX) and a.c. and d.c. electrical conductivity measurements. The phases all show values of electrical conductivity, σ, of about 10−4 Ω−1 cm−1 at 303 K and photoconductive effect. The conductivity is nearly five orders of magnitude larger than that of related phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号