首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of multi-walled carbon nanotube (CNT) dispersion on stress-strain behaviors of poly-ether-ether-ketone (PEEK) at room temperature. Tensile test specimens containing 9 wt.% and 15 wt.% of CNT were fabricated using injection molding. Results of focused ion beam (FIB) observations show that many CNTs in the CNT/PEEK composite are aligned longitudinally. Although the PEEK stress-strain behavior is almost linear up to 1.5% strain, the stress-strain curves of CNT/PEEK composites exhibit considerable nonlinear and hysteretic behaviors from extremely low strain (<0.1%) under both tensile and compressive loading. The experimental results suggest that the viscoelastic deformation effects on nonlinear and hysteresis behaviors are not strong below 1.5% strain. Presumably, the slippage at the CNT-PEEK interface occurs with increasing applied stress because of poor interfacial load-transfer capability.  相似文献   

2.
In the paper, a novel kind of imidazolium based poly(urethane-ionic liquid)/multi-walled carbon nanotubes (PUIL/MWCNT) composites was facilely prepared by uncovalent ways. The imidazolium based ionic liquid (IL) greatly improved the dispersion of pristine MWCNTs in PUIL by the π-cation interaction formed between the imidazolium cation and the π-electron of MWCNTs. The PUIL/MWCNT composites showed obviously increased modulus, glass transition temperature and tensile strength in comparison with PU/MWCNT composites. The thermal and mechanical properties of the PUIL/MWCNT composites presented significant increase with low load of the MWCNTs. It indicated the interactions between PUIL and MWCNTs played an important role to enhance the performances of the composites.  相似文献   

3.
Carbon nanotube (CNT)/cellulose composite materials were fabricated in a paper making process optimized for a CNT network to form on the cellulose fibers. The measured electric conductivity was from 0.05 to 671 S/m for 0.5–16.7 wt.% CNT content, higher than that for other polymer composites. The real permittivities were the highest in the microwave region. The unique CNT network structure is thought to be the reason for these high conductivity and permittivity values. Compared to other carbon materials, our carbon CNT/cellulose composite material had improved parameters without decreased mechanical strength. The near-field electromagnetic shielding effectiveness (EMI SE) measured by a microstrip line method depended on the sheet conductivity and qualitatively matched the results of electromagnetic field simulations using a finite-difference time-domain simulator. A high near-field EMI SE of 50-dB was achieved in the 5–10 GHz frequency region with 4.8 wt.% composite paper. The far-field EMI SE was measured by a free space method. Fairly good agreement was obtained between the measured and calculated results. Approximately 10 wt.% CNT is required to achieve composite paper with 20-dB far-field EMI SE.  相似文献   

4.
In recent years, carbon nanotubes (CNTs) grown on fibers have attracted a lot of interest as an additional reinforcing component in conventional fiber-reinforced composites to improve the properties of the fiber/matrix interface. Due to harsh growth conditions, the CNT-grafted fibers often exhibit degraded tensile properties. In the current study we explore an alternative approach to deliver CNTs to the fiber surface by dispersing CNTs in the fiber sizing formulation. This route takes advantage of the developed techniques for CNT dispersion in resins and introduces no damage to the fibers. We focus on unidirectional glass fiber/epoxy macro-composites where CNTs are introduced in three ways: (1) in the fiber sizing, (2) in the matrix and (3) in the fiber sizing and matrix simultaneously. Interfacial shear strength (IFSS) is investigated using single-fiber push-out microindentation. The results of the test reveal an increase of IFSS in all three cases. The maximum gain (over 90%) is achieved in the composite where CNTs are introduced solely in the fiber sizing.  相似文献   

5.
This paper presents a bulk composite method for determining the critical aspect ratio and relative interfacial shear stress (ISS) for multiwalled carbon nanotube (MWNT)/polymer composites. Through a modified pullout test and fragmentation test, it was found that the critical aspect ratio was 300 and decreased by a factor of 3 due to surface modification, and that MWNTs at an angle of greater than 60° to the loading direction failed in bending instead of pulling out of the matrix. Finite element analysis was used to determine the critical bending shear strength and MWNT modulus. The obtained bending shear strength was used in a mechanics model developed to provide bounds for the ISS in the experimental composite system. The calculated ISS for as-received nanotube falls between 4.8 and 13.7 MPa, and for surface treated nanotube falls in the range of 11.1 and 38.3 MPa. These values are consistent with the ISS reported for carbon fiber/polymer composites and also show that the ISS almost triples due to chemical modification of the MWNT surface.  相似文献   

6.
We are presenting a method of synthesizing three-dimensional self-assembled multi-walled carbon nanotube (MWCNT) nanopaper on hydrophilic polycarbonate membrane. The process is based on the very well-defined dispersion of nanotube and controlled pressure vacuum deposition procedure. The morphology and structure of the nanopaper are characterized with scanning electronic microscopy (SEM) over a wide range of scale sizes. A continuous and compact network observed from the microscopic images indicates that the MWCNT nanopaper could have highly conductive property. As a consequence, the sensing properties of conductive MWCNT nanopaper are characterized by functions of temperature and water content. Meanwhile, in combination with shape-memory polymer (SMP), the conductive MWCNT nanopaper facilitates the actuation in SMP nanocomposite induced by electrically resistive heating. Furthermore, the actuating capability of SMP nanocomposite is utilized to drive up a 5-gram mass from 0 to 30 mm in height.  相似文献   

7.
This study examined the mechanical properties of aligned multi-walled carbon nanotube (CNT)/epoxy composites processed using a hot-melt prepreg method. Vertically aligned ultra-long CNT arrays (forest) were synthesized using chemical vapor deposition, and were converted to horizontally aligned CNT sheets by pulling them out. An aligned CNT/epoxy prepreg was fabricated using hot-melting with B-stage cured epoxy resin film. The resin content in prepreg was well controlled. The prepreg sheets showed good drapability and tackiness. Composite film specimens of 24-33 μm thickness were produced, and tensile tests were conducted to evaluate the mechanical properties. The resultant composites exhibit higher Young’s modulus and tensile strength than those of composites produced using conventional CNT/epoxy mixing methods. For example, the maximum elastic modulus and ultimate tensile strength (UTS) of a CNT (21.4 vol.%)/epoxy composite were 50.6 GPa and 183 MPa. These values were, respectively, 19 and 2.9 times those of the epoxy resin.  相似文献   

8.
The piezoresistance of a multi-walled carbon nanotube filled silicone rubber composite under uniaxial pressure was studied. The experimental results show that the active carboxyl radical on multi-walled carbon nanotubes can effectively improve the homogeneous distribution and alignment of conductive paths in the composite. As a result, the composite presented positive piezoresistance with improved sensitivity and sensing linearity for pressure, both of which are key parameters for sensor applications.  相似文献   

9.
Growing carbon nanotubes (CNTs) on the surface of fibers has the potential to modify fiber–matrix interfacial adhesion, enhance the composite delamination resistance, and possibly improve its toughness and any matrix-dominated elastic property as well. In the present work aligned CNTs were grown upon ceramic fibers (silica and alumina) by chemical vapor deposition (CVD) at temperatures of 650 °C and 750 °C. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on pristine as well as on CNT-grown fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Significant increases (up to 50%) are observed in the fiber tensile strength and in the interfacial adhesion (which was sometimes doubled) with all fiber types upon which CNTs are CVD-grown at 750 °C. We discuss the likely sources of these improvements as well as their implications.  相似文献   

10.
To assess the effect of carbon nanotube (CNT) grafting on interfacial stress transfer in fiber composites, CNTs were grown upon individual carbon T-300 fibers by chemical vapor deposition. Continuously-monitored single fiber composite (SFC) fragmentation tests were performed on both pristine and CNT-decorated fibers embedded in epoxy. The critical fragment length, fiber tensile strength at critical length, and interfacial shear strength were evaluated. Despite the fiber strength degradation resulting from the harsh CNT growth conditions, the CNT-modified fibers lead to a twofold increase in interfacial shear strength which correlates with the nearly threefold increase in apparent fiber diameter resulting from CNT grafting. These observations corroborate recently published studies with other CNT-grafted fibers. An analysis of the relative contributions to the interfacial strength of the fiber diameter and strength due to surface treatment is presented. It is concluded that the common view whereby an experimentally observed shorter average fragment length leads to a stronger interfacial adhesion is not necessarily correct, if the treatment has changed the fiber tensile strength or its diameter.  相似文献   

11.
Vinyl ester resins are often utilized in advanced naval composite structures due to the relatively low viscosity of the resin and the capability to cure at ambient temperatures. These qualities facilitate the production of large naval composite structures using resin infusion techniques. Vinyl ester monomer was synthesized from the epoxy resin to overcome processing challenges associated with volatility of the styrene monomer in vinyl ester resin. In this research we have investigated the use of a calendering approach for dispersion of multi-walled carbon nanotubes in vinyl ester monomer, and the subsequent processing of nanotube/vinyl ester composites. The high aspect ratios of the carbon nanotubes were preserved during processing and enabled the formation of a conductive percolating network at low nanotube concentrations. An electrical percolation threshold below 0.1 wt.% carbon nanotubes in vinyl ester was observed. Formation of percolating carbon nanotube networks at low concentration holds promise for the utilization of carbon nanotubes as in situ sensors for detecting deformation and damage in advanced naval composites.  相似文献   

12.
Knowledge of how polyurethanes, PU, complexity affects their derived multiwalled carbon nanotube, MWCNT, composites could shed important clues for preparing future tailored PU/MWCNT elastic, strong and electrically conductive composites. In this regard, hard segment content and nature, along with MWCNT functionalisation, are believed to have great influence on both nanoscale PU/MWCNT self assembling mechanisms and on final composites properties. In this work the effect of PU hard segment content into composites was analysed. According to the results, a preferential interaction of nanotubes with polyurethanes hard segments can be assumed although nanotubes introduction hindered both soft and hard segments crystallisation. In all cases carbon nanotubes percolative network formation seemed to be crucial for obtaining significant reinforcement, being observed at this stage, a reduction of ductility, phenomena which is related to an increase on hard domains interconnections by MWCNT. The hard to soft segment ratio into PU plays a crucial role on determining the stress transfer to MWCNT. In addition, PU hard domains nature has important effect on nanotubes reinforcing character, this fact being related to the different PU intrinsic morphologies as well as different PU-MWCNT interactions.  相似文献   

13.
Fabricating carbon nanotube-based composites requires high degree of dispersion of carbon nanotubes into a polymer matrix. The widely used approaches reported in open literature for such a purpose are usually complicated and high-cost. Herein, we found that Chinese ink could be used to prepare composites composed of multi-walled carbon nanotubes (MWCNTs) and polyvinyl alcohol (PVA). The Chinese ink acted as a solvent and a dispersant. The MWCNT-ink-PVA ternary composite possessed both high flexibility and high electrical conductivity, with an optimized electrical conductivity of 8.17 S cm−1. This simple method is believed to be applicable to other nanosacle carbon materials.  相似文献   

14.
Mechanical reinforcement of polymer matrices loaded by carbon nanotubes is expected to benefit by both the high aspect ratio and the very high modulus of such nanofillers and, consequently, it depends not only by their content within the hosting system but also by the state of dispersion. This work analyses the effect on the bending modulus of dispersed multi-walled carbon nanotube (MWCNT) into an epoxy system. Results indicate that reinforcement efficiency is characterised by two limiting behaviours whose transition region coincides with the development of a percolative network of nanotubes. Well below the percolation threshold, the carbon nanotubes, contribute to the composite modulus with their exceptional modulus (in this case a value of 1.780 TPa was found), whereas it dramatically decreases above this limit due to the reduction of the effective aspect ratio and the micron sized cluster formation. An estimate of the maximum reinforcement induced by carbon nanotubes has been proposed based on percolation and stress transfer theory for large aspect ratio fillers.  相似文献   

15.
Highly-oriented polyoxymethylene (POM)/multi-walled carbon nanotube (MWCNT) composites were fabricated through solid hot stretching technology. With the draw ratio as high as 900%, the oriented composites exhibited much improved thermal conductivity and mechanical properties along the stretching direction compared with that of the isotropic samples before drawing. The thermal conductivity of the composite with 11.6 vol.% MWCNTs can reach as high as 1.2 W/m K after drawing. Microstructure observation demonstrated that the POM matrix had an ordered fibrillar bundle structure and MWCNTs in the composite tended to align parallel to the stretching direction. Wide-angle X-ray diffraction results showed that the crystal axis of the POM matrix was preferentially oriented perpendicular to the draw direction, while MWCNTs were preferentially oriented parallel to the draw direction. The strong interaction between the POM matrix and the MWCNTs hindered the orientation movement of molecules of POM, but induced the orientation movement of MWCNTs.  相似文献   

16.
Untreated and acid-treated multi-walled carbon nanotubes (MWNT) were used to fabricate MWNT/epoxy composite samples by sonication technique. The effect of MWNT addition and their surface modification on the mechanical properties were investigated. Modified Halpin–Tasi equation was used to evaluate the Young’s modulus and tensile strength of the MWNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. There was a good correlation between the experimentally obtained Young’s modulus and tensile strength values and the modified Halpin–Tsai theory. The fracture surfaces of MWNT/epoxy composite samples were analyzed by scanning electron microscope.  相似文献   

17.
In this paper, electrical and mechanical properties of Poly (p-phenylene sulfide) (PPS)/multi-wall carbon nanotubes (MWNTs) nanocomposites were reported. The composites were obtained just by simply melt mixing PPS with raw MWNTs without any pre-treatment. The dispersion of MWNTs and interfacial interaction were investigated through SEM &TEM and Raman spectra. The rheological test and crystallization behavior were also investigated to study the effects of MWNTs concentration on the structure and chain mobility of the prepared composites. Though raw MWNTs without any pre-treatment were used, a good dispersion and interaction between PPS and MWNTs have been evidenced, resulting in a great improvement of electrical properties and mechanical properties of the composites. Raman spectra showed a remarkable decrease of G band intensity and a shift of D bond, demonstrating a strong filler–matrix interaction, which was considered as due to π–π stacking between PPS and MWNTs. The storage modulus (G′) versus frequency curve presented a plateau above the percolation threshold of about 2–3 wt% with the formation of an interconnected nanotube structure, indicative of ‘pseudo-solid-like’ behavior. Meanwhile, a conductive percolation threshold of 5 wt% was achieved and the conductivity of nanocomposites increased sharply by several orders of magnitude. The difference between electrical and rheological percolation threshold, and the effect of critical percolation on the chain mobility, especially on crystallization behavior of PPS, were discussed. In summary, our work provides a simple and fast way to prepare PPS/MWNTs nanocomposites with good dispersion and improved properties.  相似文献   

18.
This study investigated the stress recovery of aligned multi-walled carbon nanotubes (MWCNTs) embedded in epoxy using Raman spectroscopy, and evaluated interfacial shear stress between MWCNTs and epoxy using shear-lag analysis. To this end, ultralong aligned MWCNTs (3.8 mm long) were embedded in epoxy to obtain Raman spectra at multiple points along the MWCNTs. Downshift of the G′-band due to tensile strain was measured from the nanotube end to the center, and the strain distribution of embedded MWCNTs was evaluated successfully. Interfacial shear stress was then estimated by minimizing the error between the shear-lag analysis and measured strain distribution. The maximum interfacial shear stress between the embedded MWCNTs and epoxy was 10.3–24.1 MPa at the failure strain of aligned MWCNT-reinforced epoxy composites (0.46% strain). Furthermore, the interfacial shear stress between an individual MWCNT and epoxy was investigated.  相似文献   

19.
Various strengths of carbon–carbon composites (C/Cs) are comprehensively reviewed. The topics reviewed include tensile, shear, compressive, and fatigue strength as well as fiber/matrix interfacial strength of C/Cs. When data are available, high temperature properties, including creep behavior, are presented. Since C/Cs have extremely low fiber/matrix interfacial strength τd, the interfacial fracture plays important roles in all of the fracture processes dealt in this review. The low τd was found to divide tensile fracture units into small bundles, to seriously degrade both shear and compressive strength, and to improve fatigue performance. In spite of the importance of the interfacial strength of C/Cs, techniques for its evaluation and analysis are still in a primitive stage.  相似文献   

20.
Stretchable, elastomeric composite conductor made of multi-walled carbon nanotubes (MWNTs) and polydimethylsiloxane (PDMS) has been fabricated by simple mixing. Electrical percolation threshold, amount of filler at which a sharp decrease of resistance occurs, has been determined to be ∼0.6 wt.% of MWNTs. The percolation threshold composition has also been confirmed from swelling experiments of the composite; the equilibrium swelling ratio slightly increases up to ∼0.6 wt.%, then decreases at higher amount of filler MWNTs. Upon cyclic stretching/release of the composite, a fully reversible electrical behavior has been observed for composites having filler content below the percolation threshold value. On the other hand, hysteretic behavior was observed for higher filler amount than the threshold value, due to rearrangement of percolative paths upon the first cycle of stretching/release. Finally, mechanical moduli of the composites have been measured and compared by buckling and microtensile test. The buckling-based measurement has led to systematically higher (∼20%) value of moduli than those from microtensile measurement, due to the internal microstructure of the composite. The elastic conductor may help the implementation of various stretchable electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号