首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composite films consisting of highly oriented boron nitride (BN) nanosheets in polysiloxane were fabricated without modifying the BN surface by applying a high magnetic field generated by a superconducting magnet. The hexagonal BN nanosheets were dispersed by sonication in a prepolymer mixture of polysiloxane. The homogeneous suspension was then cast on a polyamide spacer of microscale thickness and a magnetic field was applied before the mixture became crosslinked. The BN nanosheets in the polysiloxane were aligned with high anisotropy either parallel or perpendicular to the composite film plane depending on the magnetic flux direction. The fabricated composite films exhibited enhanced thermal conductivity by controlling the anisotropy of the BN nanosheets in the film. The mechanisms for rotation of BN nanosheets and heat diffusion across the composite film are discussed.  相似文献   

2.
A facile technique was developed to fabricate polysiloxane-based hybrid composite films containing boron nitride (BN) nanosheets using a nanopulse-width electric field. BN nanosheets assumed anisotrophic alignment under the electric field, without requiring surface coating with metallic nano particles despite the wide band gap. BN was dispersed by sonication in a pre-polymer polysiloxane mixture. The homogeneous suspension was cast on a glass spacer and subjected to either a DC electric field or a nanopulse-width electric field before the mixture was cured through polymerization. X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that BN nanosheets in the polysiloxane matrix were aligned with high anisotropy to the electric field direction, which was perpendicular to the film plane. The transmittance of the film samples, measured by UV–visible spectrometry, indicated that the composite, prepared using a nanopulse-width electric field manifested a significantly improved transmittance, compared with composites prepared without using the electric field.  相似文献   

3.
Facile orientation of boron nitride (BN) with high anisotropy in epoxy resin-based nanocomposite films was performed in a polyepoxide matrix using a nanosecond-pulse electric field to generate a high electric flux. Control of the BN anisotropy was achieved in the polymer without damaging the composite films or requiring surface modification of the BN. The degree of BN orientation perpendicular to the nanocomposite film plane, which was parallel to the electric flux, could be controlled by applying the nanosecond pulse for different lengths of time before cross-linking. The resulting composite films with oriented BN nanosheets manifested improved thermal diffusivity compared to a composite prepared without orientation.  相似文献   

4.
BN filler was added to a liquid crystalline (LC) epoxy resin to obtain a high thermal conductive material. The LC epoxy/BN composites, which were cured at different temperatures, formed an isotropic or LC polydomain phase structure. The relationship between the network orientation containing mesogenic groups and the dispersibility of the BN filler was discussed. As a result, the thermal conductivity of the LC polydomain system was drastically enhanced even at a relatively low volume fraction of BN (30 vol%), regardless of the fact that both the LC and isotropic phase systems consisted of the same resin and filler content combination. This result is due to the formation of thermal conductive paths by the BN filler by exclusion of the BN filler from the LC domain formed during the curing process in the composite having the LC polydomain matrix.  相似文献   

5.
The relocation of diamond fillers was performed in polysiloxane-based composite films under different electric fields. The microscale diamond filler particles were dispersed by sonication in a prepolymer mixture of polysiloxane, followed by high-speed mixing. The homogeneous suspension was cast onto a polyamide spacer of microscale thickness and subjected to three different electric fields: AC, DC, and switched DC, before the mixture became cross-linked. Analysis revealed that self-assemblies of linearly aligned diamond fillers (LADFs) were fabricated in the composite film, connecting the film planes as bridges with different thicknesses depending on the applied electric field. Composites with assemblies of LADFs exhibited enhanced thermal conductivity and electrical insulation, and are attractive for application as thermal interface materials in the semiconductor industry.  相似文献   

6.
采用液相还原法,制备了BN表面沉积纳米Sn粒子(BN-Sn NPs)杂化材料,用于环氧树脂(EP)的导热绝缘填料。BN-Sn NPs表面纳米Sn的粒径和熔点分别为10~30 nm 和166.5~195.3℃。BN表面沉积纳米Sn后,粉体Zeta电位及压片的导热系数增加,EP滴在压片表面的接触角降低。在BN-Sn NPs/EP复合材料固化过程中,BN-Sn NPs表面纳米Sn熔融烧结,有利于填料相互桥联在一起,降低接触热阻,并改善界面性能,从而提高BN-Sn NPs/EP复合材料的导热系数。当填料体积含量为30vol%时,BN-Sn NPs/EP复合材料的导热系数达1.61 W(m·K)?1,比未改性BN/EP复合材料的导热系数(1.08 W(m·K)?1)提高了近50%。Monte Carlo法模拟表明,BN和BN-Sn NPs在EP基体中的接触热阻(Rc)分别为6.1×106 K·W?1和3.7×106 K·W?1。与未改性BN/EP复合材料相比,BN-Sn NPs/EP复合材料的介质损耗增加,介电强度及体积电阻率降低,但仍具有良好电绝缘性能。   相似文献   

7.
石倩  雷华  苏亚  王鹏 《复合材料学报》2020,37(4):794-799
用表儿茶素(EC)作为非共价改性剂,对BN进行表面处理,研究了不同质量分数EC修饰的BN对BN@EC/环氧树脂(EP)复合材料性能的影响。采用FTIR、 XRD、 SEM、 TG等对BN、 BN@EC和BN@EC/EP复合材料的结构和性能进行表征,研究证明EC对BN改性成功,且改性过程中没有对BN的晶型结构产生影响;经EC改性后的BN在树脂基体中的分散性得到改善;SEM测试结果表明,与未改性的BN粒子相比,经EC改性后的BN粒子的团聚程度降低, BN@EC在基体中的分散性更好;经改性的BN@EC在水中的稳定性得到提高;当EC质量分数为10wt%时, BN@EC/EP复合材料的导热性能最好,热导率达1.27 W·m^-1·K^-1,与BN/EP的热导率(0.62 W·m^-1·K^-1)相比提高了106%。最后,分析了EC的加入对复合材料热稳定性能和硬度的影响,结果表明, EC的加入会略微提高复合材料的热稳定性。  相似文献   

8.
采用十八烷基三甲基溴化铵(OTAB)阳离子表面活性剂对BN微米片进行有机化改性,研究了BN表面改性对BN/环氧树脂复合材料导热性能的影响。当OTAB浓度为0.6 g · L-1时,BN表面的OTAB吸附量接近饱和。BN表面改性提高了环氧树脂对BN的浸润性,降低了BN的导热系数。SEM观察及黏度测试结果表明:BN表面改性改善了BN/环氧树脂复合材料的界面性能及体系相容性。由于界面热阻的降低,改性BN/环氧树脂复合材料的导热系数高于未改性BN/环氧树脂复合材料,当BN填充量为30%(填料与树脂基体的质量比)时,改性BN/环氧树脂复合材料的导热系数为1.03 W (m · K)-1,是未改性BN/环氧树脂导热系数(0.48 W (m · K)-1)的2.15倍。  相似文献   

9.
Powder coating nanocomposite with antibacterial properties is the aim of this study. For this purpose, nano zinc oxide was modified by vinyltrimethoxysilane (VTMS) and Triethoxy(methyl)silane (TEMS). Then various percentages of modified and non-modified nano ZnO (1, 3 and 5%), polyester resin and triglycidyl isocyanurate as a hardener were blended by twin screw extruder. Prepared polymer–matrix composite (PMC) was atomized and coated by electrostatic method on aluminum plates. Finally, samples were cured for 10 min at 200 °C. For investigating the thermal stabilities of modified nano particles, thermogravimetric analyses (TGA) were used. Antibacterial properties of coatings were investigated by gram negative bacteria Escherichia coli and gram positive Staphylococcus aureus. The results showed that the coatings demonstrate significant antibacterial activity by increasing amounts of ZnO nanoparticles (5%) when were modified by VTMS.  相似文献   

10.
蔡梦莹  师雯  张梓楠  朱雯雯  翁闯  耿飞  游峰 《功能材料》2021,52(3):3110-3114,3129
首先使用退火处理的方法使六方氮化硼(hBN)带上羟基,并与硅烷偶联剂混合,得到表面处理后的氮化硼(BN).然后用熔融共混的方式制备出不同浓度的聚氯乙烯/氮化硼(PVC/BN)及聚氯乙烯/氮化硼/聚酰胺(PVC/BN/PA)复合材料.通过维卡软化点温度测定仪,动态力学分析仪和游标卡尺、耐油性能测试对复合材料的性能进行测试...  相似文献   

11.
Formation process and mechanism of continuous CuO layers on double surfaces of polyimide films were studied. The composite films were prepared using the facile surface modification and ion exchange technique. By alkaline-induced chemical modification and ion-exchange reaction, Cu2+ ions were incorporated into the surface of polyimide substrate. Thermal treatment in ambient atmosphere resulted in the formation of CuO particles that further agglomerated on the film surface and produced well-defined CuO thin layers on the double surfaces of polyimide films. The changes in the chemical structure, surface morphology, crystalline state and the surface roughness with the increase of ambient temperature were investigated. It was interesting to find that the conversion of metallic copper and low valence sub-oxide Cu2O to high valence oxide CuO was observed in the thermal treatment process. The agglomeration mechanism for the CuO particles was proposed and proved by three steps, which illustrated that copper-catalyzed and oxygen-assisted decomposition of the polyimide overlayer resulted in the agglomeration of CuO particles. The final composite films retained the thermal stability of the pure polyimide.  相似文献   

12.
Although hexagonal boron nitride (BN) nanostructures have recently received significant attention due to their unique physical and chemical properties, their applications have been limited by a lack of processability and poor film quality. In this study, a versatile method to transfer-print high-quality BN films composed of densely stacked BN nanosheets based on a desolvation-induced adhesion switching (DIAS) mechanism is developed. It is shown that edge functionalization of BN sheets and rational selection of membrane surface energy combined with systematic control of solvation and desolvation status enable extensive tunability of interfacial interactions at BN–BN, BN–membrane, and BN–substrate boundaries. Therefore, without incorporating any additives in the BN film and applying any surface treatment on target substrates, DIAS achieves a near 100% transfer yield of pure BN films on diverse substrates, including substrates containing significant surface irregularities. The printed BNs demonstrate high optical transparency (>90%) and excellent thermal conductivity (>167 W m−1 K−1) for few-micrometer-thick films due to their dense and well-ordered microstructures. In addition to outstanding heat dissipation capability, substantial optical enhancement effects are confirmed for light-emitting, photoluminescent, and photovoltaic devices, demonstrating their remarkable promise for next-generation optoelectronic device platforms.  相似文献   

13.
Thermal conductivity of boron nitride reinforced polyethylene composites   总被引:1,自引:0,他引:1  
The thermal conductivity of boron nitride (BN) particulates reinforced high density polyethylene (HDPE) composites was investigated under a special dispersion state of BN particles in HDPE, i.e., BN particles surrounding HDPE particles. The effects of BN content, particle size of HDPE and temperature on the thermal conductivity of the composites were discussed. The results indicate that the special dispersion of BN in matrix provides the composites with high thermal conductivity; moreover, the thermal conductivity of composites is higher for the larger size HDPE than for the smaller size one. The thermal conductivity increases with increasing filler content, and significantly deviates the predictions from the theoretic models. It is found also that the combined use of BN particles and alumina short fiber obtains higher thermal conductivity of composites compared to the BN particles used alone.  相似文献   

14.
This paper describes the preparation and characterization of phenolic resins’ thermospheres covered by a magnetic phase of iron oxide. The thermospheres were prepared by allowing phenol and formaldehyde to react under dispersion polymerization conditions and the iron oxide phase was incorporated in situ onto the phenolic resin particles by adding concentrated NH3 to FeCl2 in DMSO. This reaction was conducted at 70 °C under nitrogen atmosphere in a controlled temperature vessel, and the modified resin was isolated and dried in vacuo. Both pure and modified resins were characterized by DRX, TG-DTA, and MEV/EDX. The modified particles were attracted by a magnetic field, indicating the fixation of magnetic iron oxide. No diffraction peaks were observed in DRX analysis; thermal analysis (DTA) of both pure and modified resins presented exothermic events between 300 and 680 °C, and 300 and 570 °C, respectively, indicating the microstructure of the resin was modified after the treatment. Thermogravimetric analysis (TGA) of the pure resin registered a 2.0% residue, compared to 8.0% for the modified resin. These residues correspond to about 7.0% of fixed iron oxide. MEV/EDX analyses confirm the modification of the resins by the process of fixing iron oxide.  相似文献   

15.
用粉末混合法制备了氮化硼增强高密聚乙烯塑料,研究了材料内部填料分散状态,填料含量,基体粒径和温度对热导率的影响。结果表明,材料中填料粒子围绕在聚乙烯粒子周围,形成了特殊的网状导热通路;增大填料用量和基体粒径,热导率升高;填料体积用量为30%时体系热导率达0.96 W/m.K,是基体热导率的3倍多。用Y.Agari模型分析了基体粒径对形成导热通路的影响。此外,使用氧化铝短纤维和氮化硼混杂填料能获得更高的热导率。  相似文献   

16.
Zhu Y  Bando Y  Yin L  Golberg D 《Nano letters》2006,6(12):2982-2986
Field emitters in nanoscale are important in micro/nanoelectronic devices. Here, we report a large scale synthesis and effective field emission of field nanoemitters. The integrated nanostructures of ultrathin BN nanosheets aligned on Si3N4 nanowires are prepared through a two-stage process. Si3N4 nanowires were previously synthesized through heating Si powder at 1500 degrees C under a N2 atmosphere. Ultrathin BN nanosheets were then deposited on Si3N4 nanowires by heating a homemade B-N-O precursor under a N2/NH3 atmosphere. The as-prepared nanofilaments act as cold electron emitters displaying excellent field emission performance owing to the untrathin and sharp edges of the protruding BN nanosheets.  相似文献   

17.
聚酰亚胺复合材料以其优异的性能以及在航空航天、轨道交通、微电子等领域广泛的应用前景引起越来越多的关注。在750 ℃条件下对SiC晶须进行表面氧化处理, 形成SiC@SiO2包覆结构晶须, 与BN颗粒构成复合填料, 分别采用硅烷偶联剂和钛酸酯偶联剂进行表面改性, 用原位聚合法制备了SiC@SiO2/BN/PI(PI:聚酰亚胺)复合材料。采用傅里叶变换红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪(XRD)等进行结构和性能表征。结果表明: 晶须与颗粒质量比为4 : 1时, 复合填料在PI基体内形成了有效的导热网络, 且当填料含量为45wt%时, SiC@SiO2/BN/PI复合材料导热系数达到0.95 W/(m·K)。SiC@SiO2/BN/PI复合材料的力学性能随着复合填料的种类和数量的变化呈现规律性变化。SiO2氧化层阻断复合填料间自由电子的移动, SiC@SiO2/BN/PI复合材料的电气绝缘性能下降幅度减小。  相似文献   

18.
Tetrapod-shaped zinc oxide (T-ZnO) whiskers and boron nitride (BN) flakes were employed to improve the thermal conductivity of phenolic formaldehyde resin (PF). A striking synergistic effect on thermal conductivity of PF was achieved. The in-plane thermal conductivity of the PF composite is as high as 1.96 W m−1 K−1 with 30 wt.% BN and 30 wt.% T-ZnO, which is 6.8 times higher than that of neat PF, while its electrical insulation is maintained. With 30 wt.% BN and 30 wt.% T-ZnO, the flexural strength of the composite is 312.9% higher than that of neat PF, and 56.2% higher that of the PF composite with 60 wt.% BN. The elongation at break is also improved by 51.8% in comparison with that of the composite with 60 wt.% BN. Such a synergistic effect results from the bridging of T-ZnO whiskers between BN flakes facilitating the formation of effective thermal conductance network within PF matrix.  相似文献   

19.
周伟  肖鹏  李杨  罗衡  洪文 《无机材料学报》2014,29(10):1093-1098
以尿素、硼酸为原料, 采用浸涂工艺先在炭纤维表面制备BN涂层, 再以三氯甲基硅烷为前驱体, 采用化学气相沉积工艺在纤维表面沉积SiC涂层, 制得了BN/SiC复合涂层改性炭纤维。对BN/SiC复合涂层改性炭纤维的微观结构、抗氧化性能、介电性能及吸波性能进行了研究。结果表明: 炭纤维表面BN涂层的厚度约为0.1 μm, SiC涂层的厚度约为0.7 μm。炭纤维经表面BN/SiC复合涂层改性后, 抗氧化性能明显提高, 开始明显氧化失重温度从560℃提高到790℃, 最终氧化温度从780℃提高到1200℃以上; 且介电性能得到有效改善, 吸波性能显著提高。相比于未改性炭纤维, 厚度为2 mm的BN/SiC复合涂层改性炭纤维的最小反射率减小到-13.3 dB, 小于-10 dB的带宽增加至2.5 GHz。  相似文献   

20.
A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号