首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the rate capability and cyclability of LiV3O8 cathode for Li-ion batteries, LiV3O8 was modified by forming LiV3O8/carbon nanosheet composite. The LiV3O8/carbon nanosheet composite was successfully achieved via a hydrothermal route followed by a carbon coating process. The morphology and structural properties of the samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). TEM observations demonstrated that LiV3O8/carbon composite has a very flat sheet-like morphology, with each nanosheet having a smooth surface and a typical length of 400-700 nm, width of 200-350 nm, and thickness of 10-50 nm. Each sheet was surrounded by a thick layer of amorphous carbon. Electrochemical tests showed that the LiV3O8/carbon composite cathode features long-term cycling stability (194 mAh g−1 at 0.2 C after 100 cycles) and excellent rate capability (110 mAh g−1 at 5 C, 104 mAh g−1 at 10 C, and 82 mAh g−1 at 20 C after 250 cycles). Electrochemical impedance spectra (EIS) indicated that the LiV3O8/carbon composite electrode has very low charge-transfer resistance compared with pristine LiV3O8, indicating the enhanced ionic conductivity of the LiV3O8/carbon composite. The enhanced cycling stability is attributed to the fact that the LiV3O8/carbon composite can prevent the aggregation of active materials, accommodate the large volume variation, and maintain good electronic contact.  相似文献   

2.
3.
Optically clear glasses were fabricated by quenching the melt of CaCO3–Bi2O3–B2O3 (in equimolecular ratio). The amorphous and glassy characteristics of the as-quenched samples were confirmed via the X-ray powder diffraction (XRD) and differential scanning calorimetric (DSC) studies. These glasses were found to have high thermal stability parameter (S). The optical transmission studies carried out in the 200–2500 nm wavelength range confirmed both the as-quenched and heat-treated samples to be transparent between 400 nm and 2500 nm. The glass-plates that were heat-treated just above the glass transition temperature (723 K) for 6 h retained ≈60% transparency despite having nano-crystallites (≈50–100 nm) of CaBi2B2O7 (CBBO) as confirmed by both the XRD and transmission electron microscopy (TEM) studies. The dielectric properties and impedance characteristics of the as-quenched and heat-treated (723 K/6 h) samples were studied as a function of frequency at different temperatures. Cole–Cole equation was employed to rationalize the impedance data.  相似文献   

4.
BaTiO3/polyaniline and BaFe12O19/polyaniline composites were synthesized by in situ polymerization and introduced into epoxy resin and polyethylene to be microwave and infrared absorber. The spectroscopic characterizations of the formation processes of BaTiO3/polyaniline and BaFe12O19/polyaniline composites were examined using Fourier transform infrared, ultraviolet–visible spectrophotometer, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron spin resonance. Microwave absorbing properties were investigated by measuring reflection loss in the 2–18 and 18–40 GHz microwave frequency range using the free space method. The thermal extinction measurements in the 3–5 and 8–12 μm were done to evaluate the shielding affectivity of infrared. The results showed that the BaTiO3/polyaniline and BaFe12O19/polyaniline composites have good compatible dielectric and magnetic properties and hence the microwave absorbency show broad frequencies absorbing properties. Moreover, the infrared thermal image testing that the detecting ability of infrared thermal imaging was decreased when the BaFe12O19 and BaTiO3 was coating with polyaniline.  相似文献   

5.
The polyaniline (PAni)/Co0.5Zn0.5Fe2O4 nanocomposite was prepared by an in situ polymerization in an aqueous solution. The products were characterized by Fourier transform infrared (FT-IR) spectrometer, ultraviolet-visible (UV-vis) spectrometer, X-ray diffraction (XRD) and transmission electron microscope (TEM). The average particle size of the PAni/Co0.5Zn0.5Fe2O4 was estimated to be about 70 nm by TEM. The reflection loss (dB) of the nanocomposite was measured at different microwave frequencies in X-band (8.2-12.4 GHz), U-band (12.4-18 GHz) and K-band (18-26.5 GHz) by radar cross-section (RCS) method according to the national standard GJB-2038-94. The results showed the reflection loss of the PAni/Co0.5Zn0.5Fe2O4 nanocomposite was higher than that of the PAni. The maximum reflection loss of the PAni/Co0.5Zn0.5Fe2O4 nanocomposite was about −39.9 dB at 22.4 GHz with a bandwidth of 5 GHz (full frequency width at about a half of the peak response). In conclusion, this sample is a good microwave shielding and absorbing materials at higher frequency.  相似文献   

6.
The inclusion of a synthetic fluoromica clay in PET affects its processability via biaxial stretching and stretching temperature (95 °C and 102 °C) and strain rate (1 s−1 and 2 s−1) influence the structuring and properties of the stretched material. The inclusion of clay has little effect on the temperature operating window for the PET-clay but it has a major effect on deformation behaviour which will necessitate the use of much higher forming forces during processing. The strain hardening behaviour of both the filled and unfilled materials is well correlated with tensile strength and tensile modulus. Increasing the stretching temperature to reduce stretching forces has a detrimental effect on clay exfoliation, mechanical and O2 barrier properties. Increasing strain rate has a lesser effect on the strain hardening behaviour of the PET-clay compared with the pure PET and this is attributed to possible adiabatic heating in the PET-clay sample at the higher strain rate. The Halpin-Tsai model is shown to accurately predict the modulus enhancement of the PET-clay materials when a modified particle modulus rather than nominal clay modulus is used.  相似文献   

7.
In polymer layered silicate nanocomposites, significant differences have been reported between the effects of the nano-reinforcement on rigid and elastomeric nanocomposites. In this paper, we have studied elastomeric nanocomposites based upon DGEBA epoxy resin filled with montmorillonite (MMT) and cured with a long-chain polyoxypropylene diamine, for comparison with analogous rigid nanocomposites. Ultrasonic mixing was used to disperse the MMT in the matrix to improve homogeneity and decrease the agglomerate size. Two different methods of nanocomposite preparation were used in which the MMT was first swollen with either the curing agent or the epoxy before the addition of, respectively, DGEBA or diamine. A better dispersion of the nanoclay in the matrix and a greater amount of intercalation occurred when the MMT was first swollen with the diamine. The effect of MMT concentrations up to 8 wt.% on the mechanical behaviour of the epoxy/MMT nanocomposites was investigated. It was found that the addition of MMT increased the tensile strength and modulus, although SAXS and TEM indicated that a significant fraction of the clay layers were not exfoliated. Nevertheless, the addition of the clay resulted in changes in the fracture surfaces, as indicated by SEM, consistent with the tensile results and indicative of toughening.  相似文献   

8.
Planar anisotropy carbonyl-iron (PACI)/Ni0.5Zn0.5Fe2O4 composite as absorbent filler in quasimicrowave band has been synthesized via ball-milling technique and solvothermal method. The effective permeability of the composite was measured and calculated. The result indicates that the magnetic loss in the composite is mainly caused by the natural resonance. Compared with the uncoated PACI particles, the permittivity of the composite decreased dramatically, and hence a dramatic enhancement of reflection loss (RL) was obtained in quasimicrowave band. This result indicates that our PACI/ferrite composite can be used as potential microwave absorbers in quasimicrowave band for its novel microwave properties.  相似文献   

9.
Polylactide-based nanocomposites containing unmodified and organic modified sepiolite were prepared through a solution casting method. The structure and properties of materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). From the results it can be concluded that the bundles of sepiolite have been dispersed into small aggregates containing several nanorods without destroying the crystal structure. Sepiolite nanofibers were well dispersed in the PLA matrix, exhibiting a randomly orientation with the contact among them in all cases. But the thermal stability of nanocomposites has been improved more by introducing unmodified sepiolite than that with organic modified sepiolite, which has also been confirmed by molecular dynamics simulation results that hydrophobic parts of organic modifiers could prevent the interaction between PLA molecules and sepiolite surface.  相似文献   

10.
The title compound, (N4C6H21)·(Co(H2PO4)(HPO4)2), was prepared hydrothermally (473 K, 10 days, autogenous pressure), in the presence of the tris(2-aminoethyl)amine as organic template. Its structure is built up from a network of four membered-rings, formed by the vertex linkages between [CoO4] and [H2PO4] tetrahedra with [HPO4] moieties hanging from the Co center. Hydrogen bonds involving the cobalt phosphate units and the triply protonated amine molecule, contribute to the stability of the structure. The IR spectrum shows bands characteristic of the (N4C6H21)3+ cations and the (H2PO4) and (HPO4)2− phosphate anions. The UV-Visible-NIR spectrum confirms the tetrahedral coordination of Co2+ ions. The TGA analysis indicates that the dehydration of (N4C6H21)·(Co(H2PO4)(HPO4)2) occurs in one step. Magnetic measurements from 4.5 to 305 K show a weak antiferromagnetic character of this compound.  相似文献   

11.
A survey of the subsolidus phase equilibria in the system Li2O-Nd2O3-Fe2O3 was made at subsolidus temperatures in the range 1000-1050 °C. A ternary phase was identified. The phase is centered on Li5Nd4FeO10, with a cubic lattice a = 11.9494 Å. The compound melts incongruently at 1105 °C. The magnetic susceptibility was measured in the temperature range 4-300 K. The compound is paramagnetic in the temperature range 150-300 K and follows the Curie-Weiss law. At about TN = 10 K, a long-range magnetic ordering is observed.  相似文献   

12.
Thermoplastic starch/poly(vinyl alcohol) (PVOH)/clay nanocomposites, exhibiting the intercalated and exfoliated structures, were prepared via melt extrusion method. The effects of clay cation, water, PVOH and clay contents on clay intercalation and mechanical properties of nanocomposites were investigated. The experiments were carried out according to the Taguchi experimental design method. Montmorillonite (MMT) with three types of cation or modifier (Na+, alkyl ammonium ion, and citric acid) was examined. The prepared nanocomposites with modified montmorillonite indicated a mechanical improvement in the properties in comparison with pristine MMT. It was also observed that increases in tensile strength and modulus would be attained for nanocomposite samples with 10%, 5% and 4% (by weight) of water, PVOH and clay loading, respectively. The clay intercalation was examined by X-ray diffraction (XRD) patterns. The chemical structure and morphology of the optimum sample was also probed by FTIR spectroscopy and transmission electron microscopy (TEM).  相似文献   

13.
A new binary Co1/2Fe1/2(H2PO4)2·2H2O was synthesized by a simple, rapid and cost-effective method using CoCO3-Fe(c)-H3PO4 system at ambient temperature. Thermal treatment of the obtained Co1/2Fe1/2(H2PO4)2·2H2O at 600 °C yielded as a binary cobalt iron cyclotetraphosphate CoFeP4O12. The FTIR and XRD results of the synthesized Co1/2Fe1/2(H2PO4)2·2H2O and its final decomposed product CoFeP4O12 indicate the monoclinic phases with space group P21/n and C2/c, respectively. The particle morphologies of both binary metal compounds appear the flower-like microparticle shapes. Room temperature magnetization results show novel superparamagnetic behaviors of the Co1/2Fe1/2(H2PO4)2·2H2O and its final decomposed product CoFeP4O12, having no hysteresis loops in the range of ±10,000 Oe with the specific magnetization values of 0.045 and 12.502 emu/g at 10 kOe, respectively. The dominant physical properties of the obtained binary metal compounds (Co1/2Fe1/2(H2PO4)2·2H2O and CoFeP4O12) are compared with the single compounds (M(H2PO4)2·2H2O and M2P4O12; where M = Co, Fe), indicating the presence of Co ions in substitution position of Fe ions.  相似文献   

14.
The possibility of obtaining relatively high dielectric constant polymer–ceramic composite by incorporating the giant dielectric constant material, CaCu3Ti4O12 (CCTO) in a Poly(vinylidene fluoride) (PVDF) polymer matrix by melt mixing and hot pressing process was demonstrated. The structure, morphology and dielectric properties of the composites were characterized using X-ray diffraction, Thermal analysis, scanning electron microscope, and impedance analyzer. The effective dielectric constant (εeff) of the composite increased with increase in the volume fraction of CCTO at all the frequencies (100 Hz–1 MHz) under study. The dielectric loss did not show any variation up to 40% loading of CCTO, but showed an increasing trend beyond 40%. The room temperature dielectric constant as high as 95 at 100 Hz has been realized for the composite with 55 vol.% of CCTO, which has increased to about 190 at 150 °C. Theoretical models like Maxwell’s, Clausius–Mossotti, Effective medium theory, logarithmic law and Yamada were employed to rationalize the dielectric behaviour of the composite and discussed.  相似文献   

15.
A high yield hydrothermal synthesis of the open-framework cobalt borophosphate (C4N2H12)Co[B2P3O12(OH)], has been developed. The compound was characterized by single crystal X-ray diffraction methods, thermogravimetric analysis, vibrational (IR and Raman) spectroscopy and magnetic measurements. In the structure Co(II)O6 octahedra, BO4 and PO4 tetrahedra form nine-member rings which in turn are linked to form CoBPO layers parallel to the bc plane. The layers are joined together by another set of PO4 tetrahedra and the (piperazinium)2+ cations occupy the channels running along [1 0 0]. The structure is compared with that of (C2N2H10)Co[B2P3O12(OH)].  相似文献   

16.
A mild hydrothermal method using Li-birnessite (LixMnO2·nH2O) ultrafine fiber as the precursor has been adopted to prepare Li4Mn5O12, which is of interest as an electrode material for 3 V rechargeable lithium ion batteries. X-ray diffraction data reveal that the obtained powders have a pure spinel structure with a lattice constant of 8.135 Å. The scanning electron microscopy image of the obtained powders shows the particles are cubic-shaped whose average size is about 40-50 nm. The results from inductively coupled plasma-atomic emission spectroscope and wet chemical analysis indicate that a Li/Mn ratio of 0.796, and an average valence of 3.96 of Mn ion have been achieved in the as-prepared products. The thermogravimetric and differential thermal analysis data also agree with the previous reports on Li4Mn5O12, suggesting that near stoichiometry of Li4Mn5O12 has been synthesized by this procedure at the rather low temperature 110°C.  相似文献   

17.
Polymeric composites with relatively high thermal conductivity, high dielectric permittivity, and a low dissipation factor are obtained in the present study. Three types of core-shell-structured aluminum (Al) particles are incorporated in poly(vinylidene fluoride) (PVDF) by melt-mixing and hot-pressing processes. The morphological, thermal, and dielectric properties of the composites are characterized using thermal analysis, a scanning electron microscope, and a dielectric analyzer. The results indicate that the Al particles decrease the degree of crystallinity of PVDF, and that the particle size and shape of the filler affect the thermal conductivity and dielectric properties of Al/PVDF. No variation in the dissipation factor is observed up to 60 wt.% Al. Thermal conductivity and dielectric permittivity values as high as 1.65 W/m K and 230, respectively, as well as a low dissipation factor of 0.25 at 0.1 Hz, are realized for the composites with 80 wt.% spherical Al.  相似文献   

18.
Three novel organic–inorganic hybrid molecules, layered zirconium phosphates or phosphonates, were synthesized. To study the effects of organic chain length of them on the structure and properties of polymer nanocomposites, the polyurethane/α-zirconium phosphate (PU/ZrP), polyurethane/zirconium 2-aminoethylphosphonate (PU/ZrAEP) and polyurethane/zirconium 2-(2-(2-(2-aminoethylamino)ethylamino)ethylamino) ethylphosphonate (PU/Zr(AE)4P) nanocomposites were prepared, and characterized by Fourier Transform Infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and tensile testing. It was revealed that morphological, mechanical, and thermal properties of these nanocomposites were strongly dependent on the organic chain length of the layered zirconium phosphonates. The results showed that the fillers with longer chain length exhibited better dispersion in the PU matrix. As expected, the mechanical properties and water resistance were improved with the increasing of organic chain length of fillers, which attributed to better interfacial adhesion between fillers and PU matrix.  相似文献   

19.
Simultaneous thermogravimetric/differential thermal analysis of Gd2Mo3O12 showed an irreversible phase transition at 1178 K where as Gd2W3O12 showed reversible phase transition at 1433 K, which were confirmed by powder X-ray diffraction. The thermal expansion behavior of α-Gd2Mo3O12 (room temperature phase), β-Gd2Mo3O12 (phase obtained by heating Gd2Mo3O12 at 1223 K) and Gd2W3O12 have been investigated using high temperature X-ray diffractometer. The cell volume of α-Gd2Mo3O12, β-Gd2Mo3O12 and Gd2W3O12, fit into polynomial expression with respect to temperature, showed positive thermal expansion up to 1073, 1173 and 1173 K, respectively. The average volume expansion coefficients for α-Gd2Mo3O12, β-Gd2Mo3O12 and Gd2W3O12 are 39.52 × 10−6, 21.23 × 10−6 and 37.96 × 10−6 K−1, respectively.  相似文献   

20.
The present study describes the preparation, characterization, and thermal decomposition of the compound Ni(MnO4)2·xH2O, which was synthesized by a coprecipitation method at a low temperature. The role of this compound as a precursor in the synthesis of a Ni-Mn spinel was determined via X-ray, TG-DTA, electron diffraction, and EDAX measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号