首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SiO2/Al2O3 composite microspheres with SiO2 core/Al2O3 shell structure and high surface area were prepared by depositing Al2O3 colloid particles on the surface of monodispersed microporous silica microspheres using a simple electrostatic attraction and heterogeneous nucleation strategy, and then calcined at 600 °C for 4 h. The prepared products were characterized with differential thermal analysis and thermogravimetric analysis (DTA/TG), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS). It was found that uniform alumina coating could be deposited on the surface of silica microspheres by adjusting the pH values of the reaction solution to an optimal pH value of about 6.0. The specific surface area and pore volume of the SiO2/Al2O3 composite microspheres calcined at 600 °C were 653 m2 g−1 and 0.34 ml g−1, respectively.  相似文献   

2.
Well-dispersed multi-walled carbon nanotubes (CNTs) reinforced Al2O3 nanocomposites were successfully fabricated by hot-pressing. The resulting promising improvements in fracture toughness, by 94% and 65% with 2 and 5 wt.% CNTs addition respectively, compared with monolithic Al2O3, were attributed to the good dispersion of CNTs within the matrix, crack-bridging by CNTs and strong interfacial connections between the CNTs and the matrix. The interfacial phase characteristics between CNTs and Al2O3 were investigated via combined techniques. It is believed that a possible aluminium oxy-carbide as the primary interfacial phase was produced via a localized carbothermal reduction process. This interface phase presumably has good chemical compatibility and strong connections with both CNTs and the matrix and led nanocomposites to higher fracture toughness.  相似文献   

3.
Microstructures, Vickers hardness and dielectric properties of PbZrO3 ceramics with co-additions of 0.5-5 vol% Al2O3 nanoparticles have been investigated. The additive inhibited grain growth, with average grain size decreasing from ∼13 μm for PbZrO3 to ∼1 μm for the nanocomposites. The mode of fracture also changed, from predominantly inter-granular in PbZrO3 to a mixed-mode of intra- and inter-granular fracture in the composite samples. Vickers hardness values increased from 2.9 GPa for PbZrO3 to 4.1 GPa for the sample with 1 vol% Al2O3, but there was a more gradual increase for higher Al2O3 contents. Plots of relative permittivity versus temperature indicated subtle differences which were attributed to a chemical reaction between the additive and matrix during sintering. X-ray powder diffraction showed that lead aluminium oxides were the principal products of this reaction.  相似文献   

4.
Linear polyethyleneimine (PEI) was used as a non-covalent functionalizing agent to modify multi-walled carbon nanotubes (MWCNTs). Fe3O4 nanoparticles were then formed along the sidewalls of the as-modified MWCNTs through a simple solvothermal method. X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, and vibrating sample magnetometry were used to characterize the MWCNT/Fe3O4 nanocomposites. Results indicated that Fe3O4 nanoparticles with diameters ranging from 50 to 200 nm were attached to the surface of the MWCNTs by electrostatic interaction. PEI was found to improve the electrical conductivity of the MWCNT/Fe3O4 nanocomposites. The magnetic saturation value of these magnetic nanocomposites was 61.8 emu g−1. These magnetic MWCNT/Fe3O4 nanocomposites are expected to have wide applications in bionanoscience and technology.  相似文献   

5.
Al2O3/BN composite ceramics with nano-sized BN dispersions ranging from 0 to 30 vol.% were successfully fabricated by hot-pressing α-Al2O3 powders with turbostratic BN (t-BN) coating, which was prepared through chemical processes using boric acid and urea. SEM observations revealed that the nano-sized hexagonal BN (h-BN) particulates were homogeneously dispersed within Al2O3 grains as well as at grain boundaries. Vickers hardness of materials decreased with an increase in BN content. The fracture toughness was improved but the fracture strength had a small decrease, in comparison to Al2O3 monolithic ceramics. The nanocomposite ceramics with BN content more than 20 vol.% exhibited excellent machinability, which could be drilled using conventional hard metal alloy drills. Drilling rates and normal forces demonstrate the ease of machining of these materials. The preliminary information on the relationship between microstructures and properties are provided. The mechanism of material removal is also discussed.  相似文献   

6.
This work highlighted the role of blue CoO·MgO·Al2O3 pigments in changing some properties of PVC composites such as electrical, mechanical and thermal properties. The pigments were prepared by doping different ratios of magnesium in cobalt aluminate crystals using solid–solid interaction. The prepared pigments were characterized by different instrumental analysis (e.g. XRD, SEM and TEM). The influences of different concentrations of nanosized CoO·MgO·Al2O3 pigment on PVC prepared by solution blending were studied. The obtained data revealed that PVC nanocomposites containing 1CoO·1MgO·Al2O3 pigments show the most promising results. The composites containing 5 wt% of the three compositions of pigments exhibit the optimum electrical, mechanical as well as thermal properties.  相似文献   

7.
Alumina/zirconia nanopowders, with up to 20 mol% Al2O3, were prepared by wet-chemical synthesis technique, using controlled hydrolysis of alkoxides. The as-synthesized powders are amorphous, have very high specific surface area and the corresponding particle size smaller than 4 nm. Amorphous powders with 0, 10 and 20 mol% Al2O3 crystallize at 460, 692 and 749 °C, respectively, as a single-phase tetragonal zirconia, without any traces of alumina phases. Rietvled refinement of X-ray diffraction data, used for the detailed structural analysis of annealed nanopowders, showed that the high-temperature zirconia phase is stabilized due to the formation of ZrO2/Al2O3 solid solutions. High solubility of alumina in the tetragonal zirconia (up to 28.6 at% Al3+) and stabilization of tetragonal zirconia solid solution up to high temperature (as high as 1150 °C) were also confirmed.  相似文献   

8.
The helical carbon nanofibers (CNFs), synthesized at relatively low temperatures (lower than 250 °C) by using Cu as a catalyst, SiO2, TiO2, Al2O3, MgO as supports and acetylene as gas source, has been investigated.The products were characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The morphologies of obtained products influenced by the types of supports and weight ratios (Cu/support = 1:1, 1:5, and 1:10) were discussed. The average diameter of the helical CNFs was about 80 nm, and these CNFs had the same coil pitch, and coil diameter.  相似文献   

9.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

10.
The Ce0.5Zr0.3Al0.2O1.9/Pd-γ-Al2O3 catalyst prepared by a mechanochemical route and calcined at 1000 °C for 20 h in air atmosphere to evaluate the thermal stability. The prepared Ce0.5Zr0.3Al0.2O1.9/Pd-γ-Al2O3 catalyst was characterized for the oxygen storage capacity (OSC) and CO oxidation activity in automotive catalysis. For the characterization, X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique were employed. The OSC values of all samples were measured at 600 °C using thermogravimetric-differential thermal analysis. Ce0.5Zr0.3Al0.2O1.9/Pd-γ-Al2O3 catalyst calcined at 1000 °C for 20 h with a BET surface area of 41 m2 g−1 exhibited the considerably high OSC of 583 μmol-O g−1 and good OSC performance stability. The same synthesis route was employed for the preparation of the CeO2/Pd-γ-Al2O3 and Ce0.5Zr0.5O2/Pd-γ-Al2O3 for comparison.  相似文献   

11.
A pure nickel coating has been successfully plated on the surface of ultra fine Al2O3 particles via a facile electroless plating method. Coating morphology and crystallite size can be tailored by pH values. Dense coating with the maximum crystallite size of 24 nm was obtained at pH 11.0 and porous coating with the minimum crystallite size of 15 nm was obtained at pH value 12.5. The plated powders have been demonstrated to be an effective catalyst for growing boron nitride nanotubes.  相似文献   

12.
Tribological properties of bulk Al6061–Al2O3 nanocomposite prepared by mechanical milling and hot pressing were investigated. Al6061 chips were milled for 30 h to achieve a homogenous nanostructured powder. A 3 vol.% Al2O3 nanoparticles (∼30 nm) were added to the Al6061 after 15 and 30 h from the beginning of milling. The milling times with Al2O3 in these two samples were then 15 h and 30 min, respectively. Additionally, 3 vol.% Al2O3 (1 μm and 60 μm) was added to the Al6061 after 15 h of milling; where, the micron size Al2O3 in these two samples, was milled 15 h with the matrix. Hot pressing of milled samples was executed at 400 °C under 128 MPa pressure in a uniaxial die. The hot pressed samples were characterized by micro-hardness test, bulk density measurements, pin on disc wear test, and finally scanning electron microscopy observations. Fifteen hour-milled nanocomposite with nanoscale Al2O3, showed improvement in wear resistance and bulk density compared with that of 30 min-milled nanocomposites due to better dispersion of Al2O3 nanoparticles, improved surface quality of nanocomposite particles before pressing and more grain refinement of Al matrix. Moreover, increasing the reinforcement size increased the wear rate because of reduction in relative density, hardness and inter-particle spacing.  相似文献   

13.
14.
《Materials Research Bulletin》2013,48(11):4780-4784
The rare earth elements (La, Ce, Nd, Sm, Pr, and Gd) modified Pt/Al2O3 catalysts were prepared by the colloidal deposition and chemical reduction methods, respectively. Pt nanoparticles with average size 3 ± 0.5 nm were uniformly dispersed on the surface of Al2O3 for the samples prepared by the colloidal deposition method, which exhibited higher activities in the hydrogenation of 3-phenoxybenzadehyde than the corresponding samples prepared by chemical reduction method. Moreover, except Gd, the catalysts modified by rare earth elements showed better catalytic performance than unmodified Pt/Al2O3. For Pt–Ce/Al2O3 catalyst, when the weight percent of Pt and Ce was 0.5 and 0.25, respectively, the hydrogenation conversion of 3-phenoxybenzaldehyde was 97.3% after 6 h reaction. This activity improvement is due to the electronic interaction between Pt and rare earth elements, which was investigated by X-ray photoelectron spectroscopy.  相似文献   

15.
Visible light sensitive photocatalysts of Fe2O3/ZnO nanocomposites were prepared by a simple solid-state reaction method, using zinc acetate, α-Fe2O3 and sodium hydroxide at room temperature. The products were characterized by scanning electron microscopy, powder X-ray diffraction, N2 adsorption–desorption measurement, UV–vis absorption, and photoluminescence spectroscopy and used for photodecolorization of Congo red. The characterization results showed that the morphology, crystallite size, BET surface area and optical absorption of the samples varied significantly with the Fe3+ to Zn2+ ratios. The nanocomposites show two absorption edges at ultraviolet and visible region. The optical band gap values of these nanocomposites were calculated to be about 3.98–3.81 eV and 2.88–2.98 eV, which show a red shift from that of pure ZnO. These red shifts are related to the formation of Fe s-levels below the conductive band edge of ZnO and effectively extend the absorption edge into the visible region. The growth mechanisms of the samples are proposed. These nanocomposites showed high decolorization ability in visible light with wavelength up to about 400 nm. Among the samples, Fe2O3/ZnO nanoflower (molar ratio of Fe3+ to Zn2+ is 1:100) exhibited higher decolorization efficiency than the other nanocomposites. It could be considered as a promising photocatalyst for dyes treatment.  相似文献   

16.
LaMnO3/Al2O3 catalysts were successfully prepared by a novel method with polyvinyl pyrrolidone (PVP) as complexant and characterized by XRD, TGA, IR, BET, XPS and TEM techniques. The TGA and IR characterizations of the precursor revealed that LaMnO3 structure was formed under mild conditions without combustion of any organic compounds. The obtained catalysts exhibited better activity for methane combustion than those prepared by citrate method, mainly due to larger pore volume, more active oxygen species on surface and the formation of a pure perovskite structure. The high surface area of about 122 m2 g−1 was retained even after calcined at 1000 °C; and interestingly, no phase transformation or solid-state reaction was observed. This fact indicated the excellent thermal stability of catalysts, which was ascribed to the strong interaction between the support and active phase.  相似文献   

17.
Cobalt-coated Al2O3 and TiC powders were prepared using an electroless method to improve resistance to thermal shock. The mixture of cobalt-coated Al2O3 and TiC powders (about 70 wt.% Al2O3-Co + 30 wt.% TiC-Co) was hot-pressed into an Al2O3-TiC-Co composite. The thermal shock properties of the composite were evaluated by indentation technique and compared with the traditional Al2O3-TiC composite. The composites containing 3.96 vol.% cobalt exhibited better resistance to crack propagation, cyclic thermal shock and higher critical temperature difference (ΔTc). The calculation of thermal shock resistance parameters (R parameters) shows that the incorporation of cobalt improves the resistance to thermal shock fracture and thermal shock damage. The thermal physic parameters are changed very little but the flexure strength and fracture toughness of the composites are improved greatly by introducing cobalt into Al2O3-TiC (AT) composites. The better thermal shock resistance of the composites should be attributed to the higher flexure strength and fracture toughness.  相似文献   

18.
Poly(methylmethacrylate) (PMMA) based nanocomposite electron beam resists have been demonstrated by spin coating techniques. When TiO2 and Al2O3 nanoparticles were directly dispersed into the PMMA polymer matrix, the resulting nanocomposites produced poor quality films with surface roughnesses of 322 and 402 nm respectively. To improve the surface of the resists, the oxide nanoparticles were encapsulated in toluene and methanol. Using the zeta potential parameter, it was found that the stabilities of the toluene/oxide nanoparticle suspensions were 7.7 mV and 19.4 mV respectively, meaning that the suspension was not stable. However, when the TiO2 and Al2O3 nanoparticles were encapsulated in methanol the zeta potential parameter was 31.9 mV and 39.2 mV respectively. Therefore, the nanoparticle suspension was stable. This method improved the surface roughness of PMMA based nanocomposite thin films by a factor of 6.6 and 6.4, when TiO2 and Al2O3 were suspended in methanol before being dispersed into the PMMA polymer.  相似文献   

19.
Spherical monodispersed, submicron-sized Y2O3 powder was prepared via a homogeneous precipitation method using nitrate and urea as raw materials. The structure, phase evolution and morphology of Y2O3 precursor and the calcined powder were studied by FTIR, TG/DTA, XRD and SEM methods. The sphere size of the precursor was about 250 nm and that of Y2O3 powder calcined at 800 °C for 2 h was about 200-210 nm. With the spherical Y2O3 powder and a commercial Al2O3 ultrafine powder, high transparent YAG ceramics was fabricated by vacuum sintering at 1780 °C for 6 h through a solid-state reaction method. The in-line transmittances of the as-fabricated YAG ceramics at the wavelength of 1064 nm and 400 nm were 82.8% and 79.5%, respectively, which were much higher than that of the YAG ceramics with a commercial Y2O3 powder and a commercial Al2O3 ultrafine powder directly. The superior properties are attributed to the good morphology, dispersibility and uniform grain size of the as-prepared spherical Y2O3 powder, which matches that of the commercial Al2O3 powder.  相似文献   

20.
J.L. Xu  F.P. Wang  L.C. Zhao 《Materials Letters》2008,62(25):4112-4114
Al2O3 coatings were prepared on NiTi alloy by micro-arc oxidation in an aluminate solution. Thin-film X-ray diffraction (TF-XRD) indicated that the coating consisted of only Al2O3 crystal phase. Energy dispersive X-ray spectrometer (EDS) showed that there was about 2.53 at.% Ni in the surface layer, which was greatly lower than that of NiTi substrate. Scanning electron microscopy (SEM) showed that the coating exhibited a typical porous surface and excellent adhesive interface between the coating and the substrate. Direct pull-off test showed that the coating had a mean coating-substrate bonding strength of 28 ± 2 MPa. The results of electrochemical impedance spectroscopy (EIS) study and potentiodynamic polarization test indicated that the corrosion resistance of the coated sample was increased by two orders of magnitude compared with uncoated sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号