首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, an anodic electrophoretic deposition was adopted to facilitate the large-scale uniform coating of nano-fillers onto carbon fibers to enhance the interfacial properties between carbon fibers and epoxy matrix. As interface–reinforcing materials, aramid nanofibers were introduced because of their superior mechanical properties and epoxy matrix-friendly functional groups. Furthermore, aramid nanofibers can be readily coated on carbon fibers via electrophoretic deposition because they are negatively-charged in solution with high electrical mobility. Finally, aramid nanofiber-coated carbon fibers showed significantly improved interfacial properties such as higher surface free energy and interfacial shear strengths (39.7% and 34.9% increases, respectively) than those of a pristine carbon fiber despite a very small amount of embedding (0.025 wt% of aramid nanofibers in a carbon fiber), and the short beam strength of the laminated composite prepared with the aramid nanofiber-coated carbon fibers was also improved by 17.0% compared to a non-modified composite.  相似文献   

2.
The interfacial shear strength (IFSS) and fracture energy of individual carbon nanofibers embedded in epoxy were obtained for different surface conditions and treatments by novel, MEMS-based, nanoscale fiber pull-out experiments. As-grown vapor grown carbon nanofibers (VGCNFs) with turbostratic surface and 5 nm peak-to-valley surface roughness exhibited high IFSS and interfacial fracture energy, averaging 106 ± 29 MPa and 1.9 ± 0.9 J/m2, respectively. Subsequent high temperature heat treatment and graphitization resulted in drastically reduced IFSS of 66 ± 10 MPa and interfacial fracture energy of 0.65 ± 0.14 J/m2. The smaller IFSS values and the reduced standard deviation were due to significant reduction of the fiber surface roughness to 1–2 nm, as well as a decrease in surface defect density during conversion of turbostratic and amorphous carbon to highly ordered graphitic carbon. For both grades of VGCNFs failure was adhesive with clear nanofiber surfaces after debonding. Oxidative functionalization of high temperature heat-treated VGCNFs resulted in much higher IFSS of 189 ± 15 MPa and interfacial fracture energy of 3.3 ± 1.0 J/m2. The debond surfaces of functionalized nanofibers had signs of matrix residue and/or shearing of the outer graphitic layer of the VGCNFs, namely the failure mode was a combination of cohesive matrix and/or cohesive fiber failure which contributed to the high IFSS. For all three grades of VGCNFs the IFSS was independent of fiber length and diameter. The findings of this experimental study emphasized the critical role of nanofiber surface morphology and chemistry in determining the shear strength and fracture energy of nanofiber interfaces, and shed light to prior composite-level strength and fracture toughness measurements.  相似文献   

3.
Carbon nanotube (CNT)-grafted carbon fibers (CFs) have emerged as new reinforcements for improving the mechanical properties of CF-reinforced composites but such enhancement in macroscale composites has not been realized. This paper reports a facile method for preparing CNT-grafted CFs and improving the tensile strength of their composites. A CNT/polyacrylonitrile solution was sprayed onto the surface of the CF woven fabrics, and the CNTs were grafted by a thermal treatment at 300 °C. CNT-grafted CF composites were fabricated using the CNT-grafted CF woven fabrics using a vacuum-assisted resin transfer molding process with epoxy resin. The CNT-grafted CF composite exhibited 22% enhancement in the tensile strength compared to that of the pristine CF composite. Fracture surfaces of the CNT-grafted CF composites showed that the grafted CNTs obstructed the propagation of micro-cracks and micro-delamination around the CFs and also yarn boundaries, resulting in improved tensile strength of CNT-grafted CF composites.  相似文献   

4.
Lignocellulosic fibers were extracted from Egyptian industrial crops, viz. cotton stalk, rice straw, bagasse, and banana plant waste. The chemical composition of these fibers was determined. Composite materials were processed from these natural lignocellulosic fibers using low density polyethylene and acid stearic as compatibilizer, or maleated low density polyethylene. The thermal and mechanical properties were studied by differential scanning calorimetry (DSC) and tensile tests, respectively. The morphology of processed composites was studied by scanning electronic microscopy (SEM). Better compatibility and enhanced mechanical properties were obtained when using maleated LDPE as compatibilizer. The chemical composition of fibers, in terms of lignin, cellulose and hemicelluloses contents, was found to have a strong influence on the mechanical properties of the composites.  相似文献   

5.
Nanocomposites based on polyamide 6,6 and carbon nanofiber have been obtained following a new procedure. It consists of the physical mixing of the polymer matrix, in the form of powder, and the corresponding amount of additive. Then, samples were prepared by compression molding and their structural characteristics, as well as their thermal and electrical properties were determined. The materials present good electrical conductivity at lower percolation thresholds than those corresponding to systems prepared by melt mixing. The study was carried out with two different grain sizes, and the findings are discussed in terms of the different size ratios of polymer to carbon nanofiber.  相似文献   

6.
This work utilizes a modification of our process of polymer entrapment in silver to deposit silver crystals on carbon nanofibers at different relative concentrations. The experimental procedure and the characteristics of silver coated nanofibers are presented in detail. The resulting nanofibers are then melt-mixed with a polypropylene-polyaniline blend to form a uniform dispersion that is finally extruded to produce continuous monofilament composites of high axial orientation. The reinforcement effect of the silver coated nanofibers, manifested in the mechanical properties of the monofilament composites, is 3-5 folds higher than that of the pristine nanofibers due to the improved stress transfer mechanism of the former. Additional attractive properties of the new system may result from its anisotropic crystalline structure, enhanced thermal stability, potential electrical conductivity and antibacterial behavior.  相似文献   

7.
A novel approach is introduced for the experimental determination of critical fiber length in carbon fiber reinforced carbon (CFRC) composites. Critical fiber length is investigated using double lap joint samples. The transition of failure mode from bonding failure to fiber fraction with increasing overlap length correlates with the critical fiber length. Tested overlap lengths were in the range of 4–100 mm. For CFRC at hand, failure mode changes at an overlap length of 26 ± 2 mm. Hence critical fiber length is derived as lc = 52 ± 4 mm.  相似文献   

8.
Highly aligned polyimide (PI) and PI nanocomposite fibers containing carbon nanotubes (CNTs) were produced by electrospinning. Scanning electron microscopy showed the electrospun nanofibers were uniform and almost free of defects. Transmission electron microscopy indicated that the CNTs were finely dispersed and highly oriented along the CNT/PI nanofiber axis at a relatively low concentration. The as-prepared well-aligned electrospun nanofibers were then directly used as homogeneity reinforcement to enhance the tensile strength and toughness of PI films. The neat PI nanofiber reinforced PI films showed good transparency, decreased bulk density and significantly improved mechanical properties. Compared with neat PI film prepared by solution casting, the tensile strength and elongation at break for the PI film reinforced with 2 wt.% CNT/PI nanofibers were remarkably increased by 138% and 104%, respectively. The significant increases in the overall mechanical properties of the nanofibers reinforced polyimide films can be ascribed to good compatibility between the electrospun nanofibers and the matrix as well as high nanofiber orientation in the matrix. Our study demonstrates a good example for fabricating high performance and high toughness polyimide nanocomposites by using this facile homogeneity self-reinforcement method.  相似文献   

9.
In this work, molecular dynamics simulations were utilized to probe the interfacial enhancement between aromatic polymers and single walled carbon nanotube (SWCNT) induced by molecular orientation. Two aromatic polymers, polyphenylene sulfide (PPS) and polystyrene (PS) were chosen for comparison study. It was found that orientation of polymer chain could bring about an obvious promotion in interfacial interaction for both systems. In PPS/SWCNT systems, the increased interfacial interaction energy was due to the easy formation of offset π–π stacking, while in PS/SWCNT systems the formation of edge-to-face π–π stacking contributed to the enhancement. Polymer/SWCNT composites were also constructed and a similar interfacial enhancement was observed as well. The mechanism of the orientation induced enhancement was a combination of forming more π–π stacking and better coating effect. This will help to deepen the understanding of interfacial interaction in aromatic polymers/carbon nanotubes composites and guide the fabrication of high performance materials.  相似文献   

10.
Carbon nanotubes (CNT) in their various forms have great potential for use in the development of multifunctional multiscale laminated composites due to their unique geometry and properties. Recent advancements in the development of CNT hierarchical composites have mostly focused on multi-walled carbon nanotubes (MWCNT). In this work, single-walled carbon nanotubes (SWCNT) were used to develop nano-modified carbon fiber/epoxy laminates. A functionalization technique based on reduced SWCNT was employed to improve dispersion and epoxy resin-nanotube interaction. A commercial prepregging unit was then used to impregnate unidirectional carbon fiber tape with a modified epoxy system containing 0.1 wt% functionalized SWCNT. Impact and compression-after-impact (CAI) tests, Mode I interlaminar fracture toughness and Mode II interlaminar fracture toughness tests were performed on laminates with and without SWCNT. It was found that incorporation of 0.1 wt% of SWCNT resulted in a 5% reduction of the area of impact damage, a 3.5% increase in CAI strength, a 13% increase in Mode I fracture toughness, and 28% increase in Mode II interlaminar fracture toughness. A comparison between the results of this work and literature results on MWCNT-modified laminated composites suggests that SWCNT, at similar loadings, are more effective in enhancing the mechanical performance of traditional laminated composites.  相似文献   

11.
Three-dimensional reinforcement of woven advanced polymer–matrix composites using aligned carbon nanotubes (CNTs) is explored experimentally and theoretically. Radially-aligned CNTs grown in situ on the surface of fibers in a woven cloth provide significant three-dimensional reinforcement, as measured by Mode I interlaminar fracture testing and tension-bearing experiments. Aligned CNTs bridge the ply interfaces giving enhancement in both initiation and steady-state toughness, improving the already tough system by 76% in steady state (more than 1.5 kJ/m2 increase). CNT pull-out on the crack faces is the observed toughening mechanism, and an analytical model is correlated to the experimental fracture data. In the plane of the laminate, aligned CNTs enhance the tension-bearing response with increases of: 19% in bearing stiffness, 9% in critical strength, and 5% in ultimate strength accompanied by a clear change in failure mode from shear-out failure (matrix dominated) without CNTs to tensile fracture (fiber dominated) with CNTs.  相似文献   

12.
The present paper proposes an approach to characterizing fibre/matrix (F/M) interface in carbon/carbon (C/C) composites with respect to both modes of loading that may be expected: opening or shearing. Push-out and tensile tests were used. The former tests involve the shearing mode whereas the latter ones involve the opening one. Push-out tests use a diamond indenter to load the fibres. The interface sliding shear stress was obtained from the load-fibre displacement curve. The tensile tests were conducted on specimens having fibres oriented at 90° with respect to loading direction in order to preferentially open the interfaces. Interface opening strength was extracted from the composite tensile stress–strain behaviour. The specimens were examined under load and after ultimate failure by optical microscopy (OM). The mechanical properties of the F/M interfaces were then discussed.  相似文献   

13.
Defects and microvoids in the surface region not only influenced the tensile strength and strain of carbon fibers but also affected the interface formation with pyrocarbon. The interface formation in carbon-carbon composites was closely correlated to rearrangement of carbon atoms and the evolution of surface structure of carbon fiber. Half-open elliptic microvoids or edge planes at the fiber surface were beneficial to the mechanical interlocking as well as chemical bonding with pyrocarbon, contributing to a compatible interface with high interlaminar shear strength of the composites. The closed microvoids in the surface region of carbon fiber would hardly open up to bond with pyrocarbon, which brought negative effects to the mechanical properties of composites. Carbon fiber without obvious microvoids or surface defects tended to have better tensile strain but form weak interface with pyrocarbon, leading to a better pseudo-ductility and ability to absorb more fracture energy under load.  相似文献   

14.
Octaglycidyl polyhedral oligomeric silsesquioxane (gly-POSS) was successfully grafted on carbon fibers (CFs) surface to enhance interfacial properties and impact toughness of CFs reinforced methylphenylsilicone resin (MPSR) composites. After gly-POSS modification, POSS grafted CF (CF-POSS) with many epoxy functional groups was modified with tetraethylenepentamine (TEPA) to further enhance the interfacial strength. Atomic force microscopy (AFM) images showed that POSS and TEPA were grafted onto CFs surface uniformly and the surface roughness enhanced obviously. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the chemical bonding nature between CFs and POSS, as well as between POSS and TEPA. POSS and TEPA modification could increase the fiber polarity, wettability and surface energy significantly. The interlaminar shear strength (ILSS) and impact toughness of composites showed a dramatic improvement, especially for grafting with POSS and further with TEPA (CF-POSS-TEPA). Additionally, the reinforcing and toughening mechanisms were also analyzed. Meanwhile, single fiber tensile strength (TS) had no decrease after modification.  相似文献   

15.
Well-dispersed multi-walled carbon nanotubes (CNTs) reinforced Al2O3 nanocomposites were successfully fabricated by hot-pressing. The resulting promising improvements in fracture toughness, by 94% and 65% with 2 and 5 wt.% CNTs addition respectively, compared with monolithic Al2O3, were attributed to the good dispersion of CNTs within the matrix, crack-bridging by CNTs and strong interfacial connections between the CNTs and the matrix. The interfacial phase characteristics between CNTs and Al2O3 were investigated via combined techniques. It is believed that a possible aluminium oxy-carbide as the primary interfacial phase was produced via a localized carbothermal reduction process. This interface phase presumably has good chemical compatibility and strong connections with both CNTs and the matrix and led nanocomposites to higher fracture toughness.  相似文献   

16.
This paper presents an experimental study examining the interfacial behavior between a steel substrate and carbon fiber reinforced polymer (CFRP) sheets bonded with hybrid epoxy-silyl modified polymer (SMP) adhesives. The epoxy adhesive has high modulus and strength characteristics, while the SMP adhesive possesses a low modulus with permanent elastic nature. The hypothesis tested is that a combination of these two distinct materials can alleviate interfacial stresses along the bond line with maintaining adequate strength. Two types of double-lap tension tests are conducted to evaluate the bond-capacity of the epoxy and SMP adhesives and to study the effect of various hybrid bond schemes. Test results show that the specimens bonded with homogeneous epoxy demonstrate abrupt failure, whereas those with SMP exhibit gradual load-softening at failure. The load-carrying capacity and stiffness of the CFRP–steel interface are not influenced by hybrid bond configurations. The degree of CFRP-debonding is, however, affected by the hybrid bond scheme. Stress transfer from the steel substrate to the CFRP is well maintained along the hybrid bond line with significant local deformability of the interface layer. Analytical models report that shear stresses along the CFRP–steel interface are noticeably mitigated at geometric discontinuities and the proposed hybrid bond technique can be used for structure-level application.  相似文献   

17.
For the first time, electrospun carbon nanofibers (ECNFs, with diameters and lengths of ∼200 nm and ∼15 μm, respectively) were explored for the preparation of nano-epoxy resins; and the prepared resins were further investigated for the fabrication of hybrid multi-scale composites with woven fabrics of conventional carbon fibers via the technique of vacuum assisted resin transfer molding (VARTM). For comparison, vapor growth carbon nanofibers (VGCNFs) and graphite carbon nanofibers (GCNFs) were also studied for making nano-epoxy resins and hybrid multi-scale composites. Unlike VGCNFs and GCNFs that are prepared by bottom-up methods, ECNFs are produced through a top-down approach; hence, ECNFs are more cost-effective than VGCNFs and GCNFs. The results indicated that the incorporation of a small mass fraction (e.g., 0.1% and 0.3%) of ECNFs into epoxy resin would result in substantial improvements on impact absorption energy, inter-laminar shear strength, and flexural properties for both nano-epoxy resins and hybrid multi-scale composites. In general, the reinforcement effect of ECNFs was similar to that of VGCNFs, while it was higher than that of GCNFs.  相似文献   

18.
The percolation behaviour of the hybrid composites of polypropylene glycol (PPG) filled with multiwalled carbon nanotubes (MWCNTs) and Laponite RD (Lap), or with MWCNTs and organo-modified Laponite (LapO) was studied by wide angle X-ray diffraction (XRD), microscopic image analysis, and electrical conductivity measurements. Cetyltrimethylammoniumbromide (CTAB) was used as an organo-modifier of Laponite. The Lap and LapO were found to have rather different affinity to PPG. XRD data have evidenced finite PPG integration inside Lap and complete exfoliation of LapO stacks in a PPG matrix. In PPG + MWCNT composites containing no Lap or LapO, increase of MWCNT concentration above the critical value Cp ∼ 0.4 wt% resulted in percolation. The value of the percolation threshold, Cp, was practically the same for hybrid PPG + MWCNT + Lap composites. However, it noticeably decreased (Cp ∼ 0.2 wt%) in PPG + MWCNT + LapO materials. The observed behaviour of the percolation threshold may be attributed to the effects exerted by LapO on the size of MWCNT aggregates, state of their dispersion and homogeneity of their spatial distribution.  相似文献   

19.
To enhance the interfacial property between a carbon fiber and epoxy matrix, an ultrasonic technique was used to treat the resin liquid and the impregnated fibers respectively. The effects of the treatments on the characteristics of the resin system and the fiber surface, as well as fiber/matrix interfacial bonding strength, were analyzed and discussed. The results indicated ultrasonic treatments significantly decreased the viscosity and surface tension of the resin system, and increased the wettability and the oxygen content of the fiber surface due to the ultrasonic cavitation effects. Microbond tests revealed much more increase of interfacial shear strength when the ultrasound was applied to the impregnated fibers, and combination failures of interface and matrix layer were observed from the pulled-out fiber surface.  相似文献   

20.
A novel method was developed to realize the situ accumulation of carbon nanofibers (CNFs) in the carbon fiber reinforced polymer composites (CFRPs) to construct the multi-scale reinforcement for improving the interlaminar properties. In this method, the prepreg was sealed by the nanomicroporous nylon membrane, and the excess resin was extracted from the prepreg by the vacuum-assisted method. It was found that the use of nylon membrane resulted in effective CNFs accumulation, especially in the interlayer by scanning electron microscopy. Short-beam strength tests and the end-notched flexure tests were conducted respectively to evaluate the interlaminar properties of CFRPs under shear loading. The results indicated that the interlaminar shear strength (ILSS) and the Mode II interlaminar fracture toughness (GIIC) of CFRPs made by the filtering membrane-assisted method remarkably increased compared with those prepared without using filtering membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号