首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CaRuO3-CaTiO3 ceramic composites were prepared by sintering for short times for potential applications in the areas of electronic ceramics. Scanning electron microscopy and energy dispersive X-ray analysis showed two separate phases, CaRuO3 and CaTiO3 in the composite. Conductivity data, measured by the four-probe method, showed that the composites have high electrical conductivity when x ≥ 0.19 in xCaRuO3-(1 − x)CaTiO3 composites. Furthermore, the nanoparticle of calcium ruthenate prepared by reverse micelle synthesis was used to be conductive agent for the composite. The result shows that the use of nano-sized calcium ruthenate enabled higher electrical conductivity to be maintained down to x = 0.09.  相似文献   

2.
Conductive films that are both stretchable and flexible could have applications in electronic devices, sensors, actuators and speakers. A substantial amount of research has been carried out on conductive polymer composites, metal electrode-integrated rubber substrates and materials based on carbon nanotubes and graphene. Here we present highly conductive, printable and stretchable hybrid composites composed of micrometre-sized silver flakes and multiwalled carbon nanotubes decorated with self-assembled silver nanoparticles. The nanotubes were used as one-dimensional, flexible and conductive scaffolds to construct effective electrical networks among the silver flakes. The nanocomposites, which included polyvinylidenefluoride copolymer, were created with a hot-rolling technique, and the maximum conductivities of the hybrid silver-nanotube composites were 5,710 S cm?1 at 0% strain and 20 S cm?1 at 140% strain, at which point the film ruptured. Three-dimensional percolation theory reveals that Poisson's ratio for the composite is a key parameter in determining how the conductivity changes upon stretching.  相似文献   

3.
Electrically conductive and thermally stable polyamide 6 (PA 6) nanocomposites were prepared through one-step in situ polymerization of ε-caprolactam monomer in the presence of electrically insulating and thermally unstable graphene oxide (GO) nanosheets. These nanocomposites show a low percolation threshold of ∼0.41 vol.% and high electrical conductivity of ∼0.028 S/m with only ∼1.64 vol.% of GO. Thermogravimetric analysis and X-ray photoelectron spectroscopy results of GO before and after thermal treatment at the polymerization temperature indicate that GO was reduced in situ during the polymerization process. X-ray diffraction patterns and scanning electron microscopy observation confirm the exfoliation of the reduced graphene oxide (RGO) in the PA 6 matrix. The low percolation threshold and high electrical conductivity are attributed to the large aspect ratio, high specific surface area and uniform dispersion of the RGO nanosheets in the matrix. In addition, although GO has a poor thermal stability, its PA 6 nanocomposite is thermally stable with a satisfactory thermal stability similar to those of neat PA 6 and PA 6/graphene nanocomposite. Such a one-step in situ polymerization and thermal reduction method shows significant potential for the mass production of electrically conductive polymer/RGO nanocomposites.  相似文献   

4.
Polymer composites with high permittivity and low dielectric loss are highly desirable in electronic and electrical industry. Adding conductive fillers could significantly increase the permittivity of a polymer. However, polymer composites containing conductive fillers often exhibit very high dielectric loss due to their large electrical conduction or leakage currents. In this work, by engineering TiO2-nanorod-decorated multi-walled carbon nanotubes (TD-CNTs), polystyrene (PS) composite with high permittivity and low dielectric loss have been successfully prepared. The composite containing of 17.2 vol.% TD-CNTs has a permittivity of 37 at 1 kHz, which is 13.7 times higher than that of the pure PS (2.7), while the dielectric loss still remains at a low value below 0.11. The dielectric properties of the composites are closely related to the length of CNTs and the loading level of TiO2-nanorods on the CNT surfaces.  相似文献   

5.
The demand for conductive textiles is increasing, owing to the need for lightweight and flexible conductive materials for a variety of applications, including electromagnetic shielding of electronic equipment. Herein we propose a process that combines the in situ synthesis of silver nanoparticles at the textile fibre surface followed by sintering of the nanoparticles to obtain highly conductive fabrics. The formation of silver particles at the nanoscale allowed for sintering to be performed efficiently, at reduced temperature and time, bestowing fabrics with high conductivity and capability of shielding electromagnetic radiation. The nanoparticle synthesis method entailed the precipitation of 2.0 g L−1 silver nitrate and further reduction with citrate, with the formation of a deposit of silver nanoparticles at the fabric surface. The amount of silver deposited (up to 195 mg of silver per g of fabric) resulted in moderate electrical conductivity with sheet resistance of 803 Ω/sq. Upon sintering, this value decreased dramatically to 5.2 Ω/sq. The sintering process was monitored by SEM, which showed that sintering at 200 °C for 30 min resulted in maximal electrical conductivity with the lowest amount of silver deposited, while forming a homogenous surface. Fabrics submitted to these sintering conditions maintained their sheet resistance and shielding effectiveness values, even after eight washing cycles.  相似文献   

6.
We show how an alternating electric field can be used to align silver micron or sub-micron sized particles into microscopic wires in diverse polymer matrices based on the dielectrophoretic effect. The electric field is set by an electrode pair and the wires form conductive pathways through the matrix, bridging these electrodes electrically. The matrix is cured after alignment, locking wires in permanent pathways within the polymer. The wires are then characterized by ac impedance spectroscopy. The alignment can take place either in-plane or out-of-plane, and yields a directional conductivity in the alignment direction parallel to the electric field lines. The samples can be centimeters wide containing thousands of wires in parallel, but even an individual wire can be grown and controlled. The initial mixture contains less than 1 vol.% of silver and is an electrical insulator. The bulk conductivity enhancement, due to the alignment, may be 5 orders of magnitude, typically from 1 × 10−5 S/m to 1 S/m as the particle alignment converts the sample conductivity from polymer dominated to silver dominated. For the aligned isolated silver wires, the jump in conductivity, confined to the volume filled by the wire can be seen to be as high as 9–10 orders of magnitude, resulting in conductivities as high as 1 × 105 S/m, thus approaching those of pure metal. This technique offers new ways on how e.g. conducting polymer composites and conducting glues could be produced.  相似文献   

7.
Thermal resistance is an essential aspect of electronic circuits designing. It leads to unexpected changes in electronic components during their work. In this study, new materials for screen printed RFID tag's antennas were characterized in terms of their resistance to thermal exposure. Polymer materials containing silver flakes, silver nanopowder, carbon nanotubes or conductive polymer PEDOT:PSS were elaborated and used for antenna printing on flexible materials. In order to verify their long term susceptibility to damages caused by the changing environmental conditions, the temperature cycling test was used in three different temperature ranges: +65 °C, −12 °C, −40 °C/+85 °C (3 h in each temp., dwell time 1 h). The highest durability to thermal exposure exhibited the paste with carbon nanotubes dispersed in poly(methyl methacrylate) PMMA and the lowest one – the paste with conductive polymer PEDOT:PSS.  相似文献   

8.
针对柔性聚合物基导电复合材料的导电性差和柔性差这2个关键问题,分别从导电填料的柔性化及降低填料含量2方面着手,以脱氧核糖核酸(DNA)大分子链作为模板,制备了大小均一、链状排列的柔性纳米Ag链及纳米Ag链填充的聚氨酯基柔性导电复合材料。利用SEM对纳米Ag链/Ag包Cu粉/聚氨酯导电复合材料的界面结构进行了表征,探讨了纳米Ag链/Ag包Cu粉/聚氨酯导电复合材料导电性及柔性的机制。研究发现:保持导电填料总质量分数为76%、纳米Ag链的质量分数为4%时,纳米Ag链/Ag包Cu粉/聚氨酯导电复合材料的电阻率及形变前后的电阻变化比值达到最佳值,分别为2.13×10-4 Ω·cm和3.6;当以纳米Ag链为单一填料时,制得的纳米Ag链/聚氨酯导电复合材料具有优异的柔性;泡沫法制备的纳米Ag链/聚氨酯导电复合材料可以在低填料质量分数时达到更高的导电性,当纳米Ag链质量分数为60%时,方阻为56 Ω/sq,低于共混法制备的填料质量分数为65%时的纳米Ag链/聚氨酯导电复合材料(98 Ω/sq)。   相似文献   

9.
This study investigates the synergistic effect of combining multi-walled carbon nanotubes (MWCNTs) and boron nitride (BN) flakes on thermally conductive epoxy composite. The surface of the two fillers was functionalized to form covalent bonds between the epoxy and filler, thereby reducing thermal interfacial resistance. The hybrid filler provided significant enhancement of thermal conductivity, adding 30 vol% modified BN and 1 vol% functionalized MWCNTs achieving a 743% increase in thermal conductivity (1.913 W mK−1, compared to 0.2267 W mK−1 of neat epoxy).  相似文献   

10.
Silver nanoparticles with a mean diameter of approximately 30 nm were synthesized by reduction of silver nitrate with triethanolamine in the presence of polyacrylic acid. Silver nanoparticle-based ink was prepared by dispersing silver nanoparticles into a mixture of water and ethylene glycol. The mechanism for the dispersion and aggregation of silver nanoparticles in ink is discussed. The strong electrostatic repulsions of the carboxylate anions of the adsorbed polyacrylic acid molecules disturbed the aggregation of metal particles in solutions with a high pH value (pH > 5). An inkjet printer was used to deposit this silver nanoparticle-based ink to form silver patterns on photo paper. The actual printing qualities of the silver tracks were then analyzed by variation of printing passes, sintering temperature and time. The results showed that sintering temperature and time are associated strongly with the conductivity of the inkjet-printed conductive patterns. The conductivity of printed patterns sintered at 150 °C increased to 2.1 × 107 S m−1, which was approximately one third that of bulk silver. In addition, silver tracks on paper substrate also showed better electrical performance after folding. This study demonstrated that the resulting ink-jet printed patterns can be used as conductive tracks in flexible electronic devices.  相似文献   

11.
In order to better understand the relationship of processing–structure–mechanical properties of in situ TiB whisker reinforced Ti6Al4V (TiBw/Ti64) composites with a novel network architecture, the effects of sintering parameters on the microstructure and tensile properties of the composites were investigated. TiB whiskers with the highest aspect ratio and the coarsest whiskers were obtained at 1100 °C and 1200 °C due to the skips of whisker growth speeds along the [0 1 0] direction and the [0 0 1] and [1 0 0] directions, respectively. Additionally, TiB whisker with a claw-like structure can be synthesized from one TiB2 polycrystal parent. The quasi-continuous network architecture of TiBw/Ti64 composites can be achieved at higher sintering temperatures more than 1200 °C. The prepared composites with the quasi-continuous network architecture exhibit a superior combination of tensile properties.  相似文献   

12.
Rare earth oxides (REO = Gd2O3, Dy2O3, Tm2O3) and acrylic acid (AA) were in situ reacted in hydrogenated acrylonitrile–butadiene rubber (HNBR) to prepare HNBR/multi-walled carbon nanotube (MWCNT)/REO/AA composites. The HNBR/MWCNT/REO/AA composites have higher permittivity and dielectric loss than HNBR/MWCNT composite, leading to significantly enhanced microwave absorbing performance of the HNBR/MWCNT/REO/AA composites. Dielectric permittivity analysis reveals that the HNBR/MWCNT/REO/AA composites have longer dielectric relaxation time and higher conductivity than the HNBR/MWCNT composite. The HNBR/MWCNT composite has the minimum reflection loss of −15.1 dB, while the HNBR/MWCNT/REO/AA composites have the minimum reflection loss of −48.8 dB. The improvement of microwave absorbing performance is attributed to the stronger interfacial polarization and higher conductivity after formation of in situ prepared rare earth acrylates.  相似文献   

13.
In this study, electrical conductivity of a vinyl ester based composite containing low content (0.05, 0.1 and 0.3 wt.%) of double and multi-walled carbon nanotubes with and without amine functional groups (DWCNTs, MWCNTs, DWCNT-NH2 and MWCNT-NH2) was investigated. The composite with pristine MWCNTs was found to exhibit the highest electrical conductivity. Experiments aimed to induce an aligned conductive network with application of an alternating current (AC) electric field during cure were carried out on the resin suspensions with MWCNTs. Formation of electric anisotropy within the composite was verified. Light microscopy (LM), scanning electron (SEM) and transmission electron microscopy (TEM) were conducted to visualize dispersion state and the extent of alignment of MWCNTs within the polymer cured with and without application of the electric field. To gain a better understanding of electric field induced effects, glass transition temperature (Tg) of the composites was measured via Differential Scanning Calorimetry (DSC). It was determined that at 0.05 wt.% loading rate of MWCNTs, the composites, cured with application of the AC electric field, possessed a higher Tg than the composites cured without application of the AC electric field.  相似文献   

14.
The ionic transport in thin film plasticized polymer electrolytes based on polyvinylidene fluoride (PVdF) as the polymer host, silver triflate (AgCF3SO3) as salt and ethylene carbonate (EC) as plasticizer prepared by solution casting technique has been reported. Addition of silver triflate has resulted in an increase in the room temperature (298 K) electrical conductivity of the polymer from 10−6 to 10−5 S cm−1 whereas incorporation of EC as the plasticizer has further enhanced the conductivity value by an order of magnitude to 10−4 S cm−1 owing to the possible decrease in crystallinity of the polymer matrix as revealed by the detailed temperature-dependent complex impedance, silver ionic transference number, Fourier transform infrared and X-ray diffraction measurements.  相似文献   

15.
Colloidal liquid metal alloys of gallium, with melting points below room temperature, are potential candidates for creating electrically conductive and flexible composites. However, inclusion of liquid metal micro‐ and nanodroplets into soft polymeric matrices requires a harsh auxiliary mechanical pressing to rupture the droplets to establish continuous pathways for high electrical conductivity. However, such a destructive strategy reduces the integrity of the composites. Here, this problem is solved by incorporating small loading of nonfunctionalized graphene flakes into the composites. The flakes introduce cavities that are filled with liquid metal after only relatively mild press‐rolling (<0.1 MPa) to form electrically conductive continuous pathways within the polymeric matrix, while maintaining the integrity and flexibility of the composites. The composites are characterized to show that even very low graphene loadings (≈0.6 wt%) can achieve high electrical conductivity. The electrical conductance remains nearly constant, with changes less than 0.5%, even under a relatively high applied pressure of >30 kPa. The composites are used for forming flexible electrically‐conductive tracks in electronic circuits with a self‐healing property. The demonstrated application of co‐fillers, together with liquid metal droplets, can be used for establishing electrically‐conductive printable‐composite tracks for future large‐area flexible electronics.  相似文献   

16.
The electrical conductivity of polyethersulphone (PES) insulating polymer was improved by incorporation of electrically conductive graphite and ions. An initial conducting pathway of the PES/graphite composites was formed at lower than 3 wt.% of the filler content. LiCl was found to be an effective dopant for the improvement of the electrical conductivities of the PES/graphite composites. By doping with 0.06 wt.% of LiCl the electrical conductivity was enhanced by two orders of magnitude. The enhancement resulted from intercalation of Li+ ions into interlayer spaces of the graphite. Upon intercalation, an acceptor GIC, Li-GIC, was consequently formed. The stability of the improved electrical conductivities of the composites contributed with doped-ions was assessed. The electrical conductivity of both un-doped and doped graphite/PES composites slightly increased with increasing temperature and slightly decreased by physical ageing. The enhancement of the electrical conductivities by doping ions was stable at the high temperatures.  相似文献   

17.
Pure titanium matrix composite reinforced with carbon nanotubes (CNTs) was prepared by spark plasma sintering and hot extrusion via powder metallurgy process. Titanium (Ti) powders were coated with CNTs via a wet process using a zwitterionic surfactant solution containing 1.0, 2.0 and 3.0 wt.% of CNTs. In situ TiC formation via reaction of CNTs with titanium occurred during sintering, and TiC particles were uniformly dispersed in the matrix. As-extruded Ti/TiCs composite rods were annealed at 473 K for 3.6 ks to reduce the residual stress during processing. After annealing process, the tensile properties of the composites were evaluated at room temperature, 473, 573 and 673 K, respectively. Hardness test was also performed at room temperature up to 573 K with a step of 50 K. The mechanical properties of extruded Ti/CNTs composites at elevated temperature were remarkably improved by adding a small amount of CNTs, compared to extruded Ti matrix. These were due to the TiC dispersoids originated from CNTs effectively stabilized the microstructure of extruded Ti composites by their pinning effect. Moreover, the coarsening and growth of Ti grain never occurred even though they were annealed at 573, 673 K for 36 ks and 673 K for 360 ks, respectively.  相似文献   

18.
Two of the limitations of carbon nanotube (CNT) polymer composites have been the low volume fraction of nanotubes and inadequate load transfer from the polymer to the stiff CNT. Here, we have utilized functionalized mats of double-walled nanotubes (DWNT) to obtain 10 wt.% DWNT in an epoxy matrix, with strength approaching those of quasi-isotropic carbon fiber composites. We used the transmission FTIR technique with in situ loaded specimens to monitor spectral shift per unit applied stress for understanding load transfer behavior at the nanotube–epoxy interface. Tests show that in most cases a tensile stress causes negative FTIR peak shift in the neat epoxy, but this behavior is not always observed for the epoxy matrix in the composite. The FTIR data can be used successfully to estimate the average matrix stress in the composite and thereby the average stress in the nanotubes. In situ Raman studies using the G′ peak are also conducted to obtain complementary information on average tensile stress in the DWNT in the loading direction. The shift response is found to be ∼37 cm−1/GPa.  相似文献   

19.
This paper reports a new approach to enhance the through-thickness thermal conductivity of laminated carbon fabric reinforced composites by using nanoscale and microscale silver particles in combination to create heterogeneously structured continuous through-thickness thermal conducting paths. High conductivity of 6.62 W/(m K) with a 5.1 v% silver volume fraction can be achieved by incorporating these nanoscale and microscale silver particles in EWC-300X/Epon862 composite. Silver flakes were distributed within the inter-tow area, while nanoscale silver particles penetrated into the fiber tows. The combination of different sizes of silver fillers is able to effectively form continuous through-thickness conduction paths penetrating fiber tows and bridging the large inter-tow resin rich areas. Positive hybrid effects to thermal conductivity were found in IM7/EWC300X/sliver particle hybrid composites. In addition, microscale fillers in resin rich areas showed less impact on tensile performance than nanoscale particles applied directly on fiber surface.  相似文献   

20.
This research concerns the effect of conductive network formation in a polymer melt on the conductivity of multi-walled carbon nanotube/thermoplastic polyurethane composite systems. An extremely low percolation threshold of 0.13 wt.% was achieved in hot-pressed composite film samples, whereas a much higher CNT concentration (3–4 wt.%) is needed to form a conductive network in extruded composite strands. This is explained in terms of the dynamic percolation behaviour of the CNT network in the polymer melt. The temperature and CNT concentration needed for dynamic percolation to take effect were studied by the conductivity versus temperature behaviour of extruded strands, in an attempt to optimise the processing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号