首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper aims at giving a better understanding of damage mechanisms that control lifetime of Cf/SiC composites at high temperatures (700-1200 °C) under static and cyclic fatigue. Acoustic emission (AE) signals were analysed with a view to identify classes corresponding to a specific damage mode. An unsupervised classification method allowed differentiating signals resulting from the following damage mechanisms: collective or individual fibre breaks, matrix cracking, fibre/matrix debonding, yarn/yarn debonding and sliding at fibre/matrix interfaces or matrix cracks closing after unloading. Then, a supervised classification method was developed. It allows real-time identification of damage mechanisms regardless of testing conditions (temperature, applied load and loading mode).  相似文献   

2.
The fatigue mechanisms of Glass Fibre Reinforced Polymer (GFRP) used in wind turbine blades were examined using computed tomography (CT). Prior to mechanical testing, as-manufactured [+45/−45/0]3,s glass/epoxy specimens were CT scanned to provide 3-dimensional images of their internal microstructure, including voids. Voids were segmented and extracted, and individual characteristics and volumetric distributions were quantified. The coupons were then fatigue tested in uniaxial loading at R = −1% to 40% of the nominal tensile failure stress. Some tests were conducted to failure for correlation with the initial void analysis and to establish failure modes. Other tests were stopped at various life fractions and examined using CT to identify key damage mechanisms. These scans revealed transverse matrix cracking in the surface layer, occurring predominantly at free edges. These free-edge cracks then appeared to facilitate edge delamination at the 45/−45° interface. Propagation from sub-critical, surface ply damage to critical, inner ply damage was identified with either a −45/0° delamination, or a 0° fibre tow failure allowing a crack to propagate into the specimen bulk. Final failure occurred in compression and was characterised by total delamination between all the 45/−45° plies. A quantitative void analysis, taken from the pre-test CT scans, was also performed and compared against the specimens’ fatigue lives. This analysis, to the authors’ knowledge the first of its kind, measured and plotted approximately 10,000 voids within the gauge length of each specimen. The global void measurement parameters and distributions showed no correlation with fatigue life. A local ply-level investigation revealed a significant correlation between the largest void and fatigue life in the region of the laminate associated with the crack propagation from sub-critical to critical damage.  相似文献   

3.
Carbon fibre reinforced polymer (CFRP) laminated composites have become attractive in the application of wind turbine blade structures. The cyclic load in the blades necessitates the investigation on the flexural fatigue behaviour of CFRP laminates. In this study, the flexural fatigue life of the [+45/−45/0]2s CFRP laminates was determined and then analysed statistically. X-ray microtomography was conducted to quantitatively characterise the 3D fatigue damage. It was found that the fatigue life data can be well represented by the two-parameter Weibull distribution; the life can be reliably predicted as a function of applied deflections by the combined Weibull and Sigmodal models. The delamination at the interfaces in the 1st ply group is the major failure mode for the flexural fatigue damage in the CFRP laminate. The calculated delamination area is larger at the interfaces adjacent to the 0 ply. The delamination propagation mechanism is primarily matrix/fibre debonding and secondarily matrix cracking.  相似文献   

4.
In this paper, multilayer plain weft knitted glass fabric reinforced epoxy composite laminates with different stacking configurations, i.e., [0°]4, [0°/±45°/0°], [0°/90°/90°/0°] and [90°]4, were investigated experimentally. The laminates were uniaxially tensile loaded until final fractures occurred. The experimental results show that with the change in layer stacking structure, a corresponding variation in composite strength and stiffness was achieved. The tensile strength and modulus rank as follows: [0°]4 > [0°/±45°/0°] > [0°/90°/90°/0°] > [90°]4, which implicates a potential desiguability of Knitted Fabric Composites (KFC) for engineering applications. Failure behaviours of the fractured laminate specimens were examined using a matrix digestion and layer peeling method, based on which the behaviour of each lamina in the laminate can be clearly shown. It was found that an angle-plied lamina in the laminate when subjected to a uniaxial tensile load has a different fracture mode from that of a single ply composite under an off-axial tensile load. This means that the lamina in the laminate is subjected to a more complicated load combination. By comparing the fractured mode of the latter lamina with that of the single ply composite, the load direction sustained by the lamina in the laminate can be identified, which provides a qualitative benchmark for verifying a theoretical simulation.  相似文献   

5.
The characterisation of the damage state of composite structures is often performed using the acoustic behaviour of the composite system. This behaviour is expected to change significantly as the damage is accumulating in the composite. It is indisputable that different damage mechanisms are activated within the composite laminate during loading scenario. These “damage entities” are acting in different space and time scales within the service life of the structure and may be interdependent. It has been argued that different damage mechanisms attribute distinct acoustic behaviour to the composite system. Loading of cross-ply laminates in particular leads to the accumulation of distinct damage mechanisms, such as matrix cracking, delamination between successive plies and fibre rupture at the final stage of loading. As highlighted in this work, the acoustic emission activity is directly linked to the structural health state of the laminate. At the same time, significant changes on the wave propagation characteristics are reported and correlated to damage accumulation in the composite laminate. In the case of cross ply laminates, experimental tests and numerical simulations indicate that, typical to the presence of transverse cracking and/or delamination, is the increase of the pulse velocity and the transmission efficiency of a propagated ultrasonic wave, an indication that the intact longitudinal plies act as wave guides, as the transverse ply deteriorates. Further to transverse cracking and delamination, the accumulation of longitudinal fibre breaks becomes dominant causing the catastrophic failure of the composite and is expected to be directly linked to the acoustic behaviour of the composite, as the stiffness loss results to the velocity decrease of the propagated wave. In view of the above, the scope of the current work is to assess the efficiency of acoustic emission and ultrasonic transmission as a combined methodology for the assessment of the introduced damage and furthermore as a structural health monitoring tool.  相似文献   

6.
This paper presents the results of current research on the fatigue life prediction of carbon/epoxy laminate composites involving twelve balanced woven bidirectional layers of carbon fibres and epoxy resin manufactured by a vacuum moulding method. The plates were produced with 3 mm thickness and 0.66 fibre weight fraction. The dog bone shape specimens were cut from these plates with the load line aligned with one of the fibre directions. The fatigue tests were performed using load control with a frequency of 10 Hz and at room temperature. The fatigue behaviour was studied for different stress ratios and for variable amplitude block loadings. The damage process was monitored in terms of the stiffness loss. The fatigue life of specimens submitted to block loading tests was modelled using Palmgren–Miner’s law and taking in to account the stress ratio effect. The estimated and experimental fatigue lives were compared and good agreement was observed.  相似文献   

7.
The through-thickness mechanical response of a carbon fibre/epoxy laminated composite of lay-up [0/45/−45]ns is measured at low rates of strain. Uniaxial tension and compression experiments are carried out on dogbone specimens cut from a thick laminate along different directions, and failure mechanisms are observed via optical and electron microscopy. The effect of direct and shear stresses at the ply interfaces on the onset of failure is measured, and a failure envelope is constructed. The compressive response of specimens of different shape is investigated. Composite beams of different volume and aspect ratios are tested to failure in three-point bending and these tests reveal a strong dependence of the apparent out-of-plane tensile strength of the composite on the beam volume; this effect is modelled by Weibull theory.  相似文献   

8.
This paper describes a series of tests focused on the combination of structural loading (bending, shear) and simultaneous penetrating impact on sandwich panels with thin GFRP face-sheets, with emphasis on the specific damage morphologies and developments depending on the type and magnitude of structural loading. The test specimens were sandwich panels, length 250 mm and width 150 mm, with carbon fibre prepreg face-sheets ([0°/90°], thickness tf ≅ 0.5 mm) bonded to the faces of a foam core (density 80 kg/m3, thickness H = 10 mm). The impact velocity was approximately 420 m/s, using a spherical steel impactor, diameter 10 mm, with a mass of 4.1 g. A high-speed camera was used for registration of panel response. It was demonstrated, that, at preload levels above a specific limit, the impact would cause catastrophic failure, i.e., complete or near-complete loss of structural load carrying capacity. Developments of failure morphology, consistent with the observed evidence, were derived and outlined.  相似文献   

9.
In this study, the influence of varying impactor geometries on the impact damage characteristics of hemp fibre reinforced unsaturated polyester composites were subjected to a low-velocity impact loading using an instrumented falling weight impact test setup. The three varying tup geometries: hemispherical, 30° and 90°, at four different impact velocity levels: 2.52 m/s, 2.71 m/s, 2.89 m/s and 2.97 m/s were assessed. The experimental results to investigate the influence of impactor geometry suggest that HFRUP composites were able to withstand higher loads when tested with hemispherical impactor and also absorbed more energy than that for 90° and 30° shaped tup geometry. The post impact damage patterns and failure mechanisms of impacted samples were further characterised by ultrasonic (UT) inspection. Impact induced damage characterised by scanning electron microscope (SEM) suggests that damage induced by the impact included a typical failure mechanisms showing matrix cracking, fibre breakage and fibre pullout. As the impact velocity increases the damage to back face of the laminate increased for laminates tested with a hemispherical impactor while it decreased to certain extent for laminates tested with 90° and 30° impactor geometries.  相似文献   

10.
High-resolution computed tomography has been carried out for carbon/epoxy laminates loaded in situ to failure. The experimental data allows major damage mechanisms to be quantified in 3D, in an unambiguous and mechanically representative way, where previous experimental analysis is limited.A multi-scale model that predicts damage accumulation in tensile loaded composites is compared to the experimental analysis, to validate the underpinning assumptions within the model and overall performance. The model considers the random nature of fibre-strengths, stress transfer resulting from fibre breaks, fibre/matrix debonding and viscosity of the matrix. Assumptions within the model are made to reduce computational times whilst considering the microscopic behaviour of the whole structure.Both model and experimental results indicate failure of the composite progresses via single fibre breaks, which, at higher loads, evolve into clusters of broken fibres. The model resulted in reasonable predictions of the preceding damage accumulation and final failure load of the structure.  相似文献   

11.
The notch and strain rate sensitivity of non-crimp glass fibre/vinyl-ester laminates subjected to uniaxial tensile loads has been investigated experimentally. Two sets of notch configurations were tested; one where circular holes were drilled and another where fragment simulating projectiles were fired through the plate creating a notch. Experiments were conducted for strain rates ranging from 10−4 s−1 to 102 s−1 using servo hydraulic machines. A significant increase in strength with increasing strain rate was observed for both notched and un-notched specimens. High speed photography revealed changes in failure mode, for certain laminate configurations, as the strain rate increased. The tested laminate configurations showed fairly small notch sensitivity for the whole range of strain rates.  相似文献   

12.
The onset and evolution of the damage in three dimensions was studied by X-ray computed micro-tomography (XCT) in a notched glass fiber/epoxy cross-ply laminate subjected to three-point bending. It was found that damage began by formation of intraply cracks in the 90° plies followed by intraply cracking the 0° plies. Fiber fracture in front of the notch tip occurred at 65% of the maximum load and finally fiber kinking and interply delamination took place under the loading point. Finite element (FE) simulations were carried out to understand crack initiation and the redistribution of stresses upon crack propagation. The crack area corresponding to each damage mechanism was quantified from the XCT images, and this information was used to determine the effective fracture resistance curve of the cross-ply laminate.  相似文献   

13.
Transverse composite plies are part of the fibre metal laminate Glare®4B and were investigated under interlaminar shear load. Double-notched shear (DNS) tests were performed and deformation and damage were in situ observed by Scanning Electron Microscopy (SEM) equipped with a loading apparatus. Interlaminar shear strength as well as shear stress values corresponding to the onset of the fibre/matrix-debonding were determined.Although a cross-ply lay-up within the laminate has been interlaminar shear loaded, damage and failure could only be found within the transverse plies. Over their thickness, fibre/matrix-debonding proved to be pronounced near the ply boundaries of the transverse plies, where exceptionally high shear strains could be found. Nevertheless, single fibre/matrix-debonding phenomena were also observed within the centre area of these transverse plies. Although interlaminar shear strain within latter regions is reduced, single events of fibre/matrix-debonding could be attributed to local high stress concentrations due to the fibre arrangement and to small inter fibre distances.  相似文献   

14.
《Composites Part A》2002,33(11):1487-1495
Low velocity impacts to fibre reinforced plastic composites cause a pattern of damage consisting in general of delamination, fibre breakage and matrix cracking. Such damage is accidental and may go unnoticed; therefore composite structures must be designed assuming impact damage exists. Previous work on flat composite laminates has resulted in a reasonable understanding of the mechanisms of compressive strength reduction. There are, however, many instances where curved laminates are used in structures where impact is likely. Furthermore, due to the mechanisms of strength reduction, it may be expected that curvature would have a significant effect on the behaviour of the laminates.The work described here consists of experimental measurement of the post-impact compressive strength of curved GFRP laminates. The laminates were of 8 plies of 0.3 mm thick pre-impregnated glass fibre/epoxy tape in a (0, ±45, 0°)s lay-up. Each laminate was 200 mm in length by 50 mm wide with the plane of curvature normal to the length. Laminates were impacted on the convex surface of the laminate by dropping a steel mass from 1 m vertically above it.Impacted laminates were loaded in compression and the out-of-plane displacements of the top and bottom surfaces were recorded. Final failure was typically due to fibre breakage occurring through the centre of the impacted area of the laminate. Possible differences in the impact response, and measurable differences in the sizes of the impact damage area, were found to arise from these curvatures, and differences were observed in their post-impact buckling behaviour. However, perhaps unexpectedly, the post-impact compressive strength for a curved laminate was found to be similar to that for a flat laminate. The failure loads for the impact damage laminates are shown to be comparable with those for laminates containing artificial delaminations.  相似文献   

15.
A series of low velocity impact tests have been carried out on a (0°, 90°) glass fibre reinforced epoxy resin in order to investigate the influence of varying key impact parameters on the damage initiation threshold. Initial tests have confirmed observations made by previous researchers, that is that the impact force required to initiate damage, Pcrit, varies linearly with t3/2, where t is the target thickness. This relationship has been shown to apply for test temperatures between 23 and 90 °C. The experimental evidence suggests that the influence of test temperature on damage initiation is complex, although the evidence does suggest that the initiation force increasing with temperature in the thinner laminates. It has also been shown that this threshold does not exhibit any significant target size dependency, for the range of plate geometries investigated here. A final series of tests to investigate the influence of impactor geometry have shown that Pcrit increases with indentor diameter, with the most significant changes being observed in the thinner laminates.  相似文献   

16.
Following the onset of damage caused by an impact load on a composite laminate structure, delaminations often form propagating outwards from the point of impact and in some cases can migrate via matrix cracks between plies as they grow. The goal of the present study is to develop an accurate finite element modeling technique for simulation of the delamination–migration phenomena in laminate impact damage processes. An experiment was devised where, under a quasi-static indentation load, an embedded delamination in the facesheet of a laminate sandwich specimen migrates via a transverse matrix crack and then continues to grow on a new ply interface. Using data from this test for validation purposes, several finite element damage simulation methods were investigated. Comparing the experimental results with those of the different models reveals certain modeling features that are important to include in a numerical simulation of delamination–migration and some that may be neglected.  相似文献   

17.
A non-local ply scale criterion [Hochard C, Lahellec N, Bordreuil C. A ply scale non-local fibre rupture criterion for CFRP woven ply laminated structures. Compos Struct 2007;80:321–26] was previously developed for predicting the failure of balanced woven ply structures with stress concentrations. This non-local criterion was based on the mean values determined over a Fracture Characteristic Volume (FCV) corresponding to a cylinder with a circular area and the same thickness as the ply. This non-local approach along with a ply scale continuum damage behavioural model was implemented in the ABAQUS Finite Element Code. The behavioural model was developed from a classical Continuum Damage Mechanics (CDM) model [Ladevèze P. A damage computational method for composite structures. Comput Struct 1992;44:79–87]. In the present study, this approach was extended to the case of unbalanced woven ply. The FCV approach and the CDM behavioural model are presented and comparisons are made between the experimental data and the modelling predictions obtained on plates with open holes, notches and saw cuts.  相似文献   

18.
A new Mixed Bending-Tension (MBT) test is proposed for mode I fracture of laminated composites. The MBT specimen consists of a relatively small pre-cracked laminate adhesively bonded to pin-loaded steel beams. This design reduces significantly the bending stresses that prevent successful application of DCB tests to certain laminates. The MBT was here applied to carbon/epoxy unidirectional [0°]26 and [90°]26 laminates with starter delaminations. Interlaminar initiation GIC values of [0°]26 laminates agreed well with previous DCB test results, while [90°]26 laminates exhibited 50% higher values. Significant lengths of fairly planar intralaminar crack propagation were seen in the latter laminates. The results showed a fibre bridging related R-curve, which was more pronounced in [0°]26 laminates. The consistency of the present results indicates that the MBT opens new possibilities for the interlaminar and intralaminar mode I fracture.  相似文献   

19.
Transverse cracking behaviour in a quasi-isotropic glass/epoxy (GFRP) laminate loaded in flexure is studied experimentally and theoretically. A theory developed for cross-ply laminates is applied to a [0°/90°/–45°/45°] S quasi-isotropic laminate. An equivalent laminate is introduced to derive the Young's modulus of a cracked transverse ply on the basis of a shear lag analysis. The model predicts the flexural stiffness, the neutral axis position and the residual curvature as a function of the transverse crack density and the in-situ ply stress at first ply failure. Experimental results are obtained with the use of the applied moment – strain data in four-point flexural tests and compared with predictions. Time-dependent behaviour of the residual curvature is also investigated.The theoretical predictions are in reasonably good agreement with the experimental results. It is found that the decrease in the residual curvature after unloading is mainly ascribed to viscoelasticity of the material.  相似文献   

20.
A micromechanics analytical model is developed for characterizing the fracture behaviour of a fibre reinforced composite laminate containing a transverse matrix crack and longitudinal debonding along 0/90 interface. Both the matrix and the fibres are considered as linear elastic. A consistent shear lag theory is used to represent the stress-displacement relations. The governing equations, a set of differential-difference equations, are solved satisfying the boundary conditions appropriate to the damage configuration by making use of an eigenvalue technique. The properties of the constituents appear in the model explicitly. Displacements and stresses in the fibres and the matrix are obtained, and the growth of damage is investigated by using the point stress criterion. The investigation includes fibre stress distribution in zero degree plies, transverse crack and debonding intitiation as functions of laminate geometry, and the effect of fibre breaks in the zero degree ply on damage growth. The predicted damage growth patterns and the corresponding critical strains agree with the finite element and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号