首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In polymer layered silicate nanocomposites, significant differences have been reported between the effects of the nano-reinforcement on rigid and elastomeric nanocomposites. In this paper, we have studied elastomeric nanocomposites based upon DGEBA epoxy resin filled with montmorillonite (MMT) and cured with a long-chain polyoxypropylene diamine, for comparison with analogous rigid nanocomposites. Ultrasonic mixing was used to disperse the MMT in the matrix to improve homogeneity and decrease the agglomerate size. Two different methods of nanocomposite preparation were used in which the MMT was first swollen with either the curing agent or the epoxy before the addition of, respectively, DGEBA or diamine. A better dispersion of the nanoclay in the matrix and a greater amount of intercalation occurred when the MMT was first swollen with the diamine. The effect of MMT concentrations up to 8 wt.% on the mechanical behaviour of the epoxy/MMT nanocomposites was investigated. It was found that the addition of MMT increased the tensile strength and modulus, although SAXS and TEM indicated that a significant fraction of the clay layers were not exfoliated. Nevertheless, the addition of the clay resulted in changes in the fracture surfaces, as indicated by SEM, consistent with the tensile results and indicative of toughening.  相似文献   

2.
Thermoplastic starch/poly(vinyl alcohol) (PVOH)/clay nanocomposites, exhibiting the intercalated and exfoliated structures, were prepared via melt extrusion method. The effects of clay cation, water, PVOH and clay contents on clay intercalation and mechanical properties of nanocomposites were investigated. The experiments were carried out according to the Taguchi experimental design method. Montmorillonite (MMT) with three types of cation or modifier (Na+, alkyl ammonium ion, and citric acid) was examined. The prepared nanocomposites with modified montmorillonite indicated a mechanical improvement in the properties in comparison with pristine MMT. It was also observed that increases in tensile strength and modulus would be attained for nanocomposite samples with 10%, 5% and 4% (by weight) of water, PVOH and clay loading, respectively. The clay intercalation was examined by X-ray diffraction (XRD) patterns. The chemical structure and morphology of the optimum sample was also probed by FTIR spectroscopy and transmission electron microscopy (TEM).  相似文献   

3.
Biobased materials developed in conjunction with nanotechnology are poised to achieve a significant presence in the world market for polymeric materials. An example of an engineering polymer that can be partially derived from biomass is poly(trimethylene terephthalate). One of its raw materials, 1,3-propanediol, can be derived from corn sugar. In the present study we used a fully petroleum-based resin as an analog to the biobased material. Five organically modified montmorillonite clays were characterized via moisture uptake studies to determine the hydrophilic/hydrophobic nature of their surfaces. Nanocomposites were produced via melt compounding followed by injection molding with 5 wt.% organoclay loading to determine which modification gave the best balance of mechanical and thermal properties. It was found that the tensile modulus increased by up to 35% and the tensile stress at break by up to 50%. The heat deflection temperature of the nanocomposites versus the neat polymer increased by up to 33 °C. From these results, one organoclay was selected for detailed study over a loading range of 0–5 wt.%. The testing revealed that over this range, changes in the mechanical properties may go through a maximum (e.g. strength) or increase/decrease to a plateau (e.g. modulus, elongation at break). X-ray diffraction and transmission electron microscopy were also used to characterize the nature of the organoclay/polymer interaction. Biobased poly(trimethylene terephthalate)/organoclay nanocomposites are expected to exhibit properties similar to the petroleum-based resin.  相似文献   

4.
Three novel organic–inorganic hybrid molecules, layered zirconium phosphates or phosphonates, were synthesized. To study the effects of organic chain length of them on the structure and properties of polymer nanocomposites, the polyurethane/α-zirconium phosphate (PU/ZrP), polyurethane/zirconium 2-aminoethylphosphonate (PU/ZrAEP) and polyurethane/zirconium 2-(2-(2-(2-aminoethylamino)ethylamino)ethylamino) ethylphosphonate (PU/Zr(AE)4P) nanocomposites were prepared, and characterized by Fourier Transform Infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and tensile testing. It was revealed that morphological, mechanical, and thermal properties of these nanocomposites were strongly dependent on the organic chain length of the layered zirconium phosphonates. The results showed that the fillers with longer chain length exhibited better dispersion in the PU matrix. As expected, the mechanical properties and water resistance were improved with the increasing of organic chain length of fillers, which attributed to better interfacial adhesion between fillers and PU matrix.  相似文献   

5.
The present paper deals with the synthesis of conducting ferromagnetic polyaniline-CoFe2O4 (PC) nanocomposites via one-step chemical oxidative polymerization of aniline in the presence of CoFe2O4 nanoparticles (30-40 nm). These nanocomposites of PC have been characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM). Extended thermal analysis has revealed that the activation energy of these nanocomposites varies from 75.3 to 84.3 kJ/mol as compared to the activation energy of 50.3 kJ/mol for polyaniline-DBSA. In addition, dielectric and microwave absorption properties of the nanocomposites have been measured in the frequency range of 12.4-18 GHz (Ku-band) which demonstrate that more than 99% attenuation of microwaves (SEA = 21.5 dB) has been achieved using these nanocomposites. Systematic investigations reveal that the CoFe2O4 nanoparticles in the polyaniline matrix have phenomenal effect in determining the microwave absorption properties of the nanocomposites.  相似文献   

6.
This paper investigates the effect of both the mixing technique and heating rate during cure on the dispersion of montmorillonite (MMT) clay in an epoxy resin. The combination of sonication and using a 10 °C/min heating rate during cure was found to facilitate the dispersion of nanoclay in epoxy resin. These processing conditions provided a synergistic effect, making it possible for polymer chains to penetrate in-between clay galleries and detach platelets from their agglomerates. As the degree of dispersion was enhanced, the flexural modulus and strength properties were found to decrease by 15% and 40%, respectively. This is thought to be due to individual platelets fracturing in the nanocomposite. Complementary techniques including X-ray diffraction (XRD), small angle X-ray scattering (SAXS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and optical microscopy were essential to fully characterise localised and spatial regions of the clay morphologies.  相似文献   

7.
A novel toughened polylactic acid (PLA) bionanocomposite with tuneable properties was successfully prepared by melt mixing PLA with natural rubber and several montmorillonites (MMTs). The organoclays were preferentially located at the interface acting as compatibilisers between both polymer phases. This location resulted in a marked improvement of the physical and mechanical properties of the system. Moreover, these properties can be controlled as a function of the nanofiller nature and the mixing procedure used.  相似文献   

8.
Tensile tests were conducted on nylon 6/organoclay nanocomposites, with and without POE-g-MA rubber particles, over a range of temperatures and strain rates 10−4–10−1 s−1. It was shown that the 0.2% offset yield strength varied with both temperature and strain rate which could be described by the Eyring equation thus providing results on the activation energy and activation volume for the physical processes involved. In addition, their tensile deformation mechanisms were characterized using the tensile dilatometry technique to differentiate the dilatational processes (e.g., voiding/debonding caused by the organoclay and rubber particles or matrix) and shear yielding (e.g., matrix with zero volume change). Dilatometric responses indicated that the presence of POE-g-MA rubber particles did not alter the shear deformation mode of neat nylon 6. In contrast, the presence of organoclay layers changed the tensile yield deformation behavior of nylon 6 matrix from dominant shear yielding to combined shear yield plus dilatation associated with delaminations of nanoclay platelets. In nylon 6/organoclay/POE-g-MA ternary nanocomposite, the volume strain response indicated that the POE-g-MA rubber particles promoted shear deformation and suppressed delamination of the organoclay layers. Supports for the deformation mechanisms deduced from the tensile dilatometry tests were corroborated by optical microscopy and transmission electron microscopy micrographs of the studied materials.  相似文献   

9.
Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods: solution blending and solution blending + melt compounding. The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods. SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all of the PVC/MMT nanocomposites. Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC/MMT nanocomposites prepared by solution blending. Vicat tests revealed a significant decrease in Vicat softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC.  相似文献   

10.
A comparative study of the use of multiwall carbon nanotubes and two different carbon nanofibers in an unsaturated polyester, forming nanocomposites, and their effect on dispersion and the electrical and mechanical properties is presented. The nanocomposites were prepared by shear mixing without the use of any solvent. The degree of dispersion was evaluated from both a micro and nanoscale point of view in order to better understand the role of the filaments on the resulting electrical and mechanical properties. The results obtained show that the dispersion depends, in addition to the high shear conditions, on the structure and nature of the nanofilaments. The best dispersion attained, showing the lowest percolation threshold, did not correspond to the most energetic mixing conditions. However, it was imperative to effectively disperse the nanofilaments into the matrix in order not to deteriorate the mechanical properties of the composites. Moreover, it seemed that lower nanofilament concentrations allowed for better dispersion, and as a result, higher mechanical performance.  相似文献   

11.
Semi-solid forming processes such as thermoforming and injection blow moulding are used to make much of today’s packaging. As for most packaging there is a drive to reduce product weight and improve properties such as barrier performance. Polymer nanocomposites offer the possibility of increased modulus (and hence potential product light weighting) as well as improved barrier properties and are the subject of much research attention. In this particular study, polypropylene–clay nanocomposite sheets produced via biaxial deformation are investigated and the structure of the nanocomposites is quantitatively determined in order to gain a better understanding of the influence of the composite structure on mechanical properties. Compression moulded sheets of polypropylene and polypropylene/Cloisite 15A nanocomposite (5 wt.%) were biaxially stretched to different stretching ratios, and then the structure of the nanocomposite was examined using XRD and TEM techniques. Different stretching ratios produced different degrees of exfoliation and orientation of the clay tactoids. The sheet properties were then investigated using DSC, DMTA, and tensile tests .It was found that regardless of the degree of exfoliation or orientation, the addition of clay has no effect on percentage crystallinity or melting temperature, but it has an effect on the crystallization temperature and on the crystal size distribution. DMTA and tensile tests show that both the degree of exfoliation and the degree of orientation positively correlate with the dynamic mechanical properties and the tensile properties of the sheet.  相似文献   

12.
Polyamide 6 (PA 6)/halloysite nanotubes (HNT) nanocomposites were prepared by melt-extrusion compounding via masterbatch dilution process. A homogeneous dispersion of HNTs in PA 6 matrix was achieved. Differential scanning calorimetric measurements showed that addition of HNTs into PA 6 matrix enhanced the crystallization temperature and degree of crystallinity, thus indicating an effective nucleation induced by the addition of HNTs. Upon halloysite addition, glass transition temperature, storage modulus, Young modulus, tensile strength and notched Charpy impact strength increased without loss of ductility. For the first time, the essential work of fracture (EWF) concept was used to analyse the toughening and fracture behaviour of PA 6/HNT systems. Significant increase (+38%) of the essential work of fracture of PA 6/HNT nanocomposites was noticed at HNTs contents as low as 4 wt.%.  相似文献   

13.
Hydroxyapatite/titania nanocomposites of different ratios have been successfully synthesized by combined high gravity and hydrothermal methods. SEM and TEM observations showed that small spheres of TiO2, identified as anatase crystals of 10–15 nm, were deposited on HAp rod-like crystals. EDAX analysis confirmed the presence of Ca, P, Ti and O. X-ray diffraction patterns indicated the presence of hydroxyapatite and anatase phase. More number of anatase peaks appeared in the XRD patterns with higher colloidal concentration of TiO2 in the HAp/TiO2 compound. Mechanical stability of the HAp/TiO2 nanocomposites was determined by reinforcing them with high molecular weight polyethylene (HMWPE) and the tensile strength of the samples was analyzed. Photocatalytic activity of the HAp/TiO2 particles was examined by decomposition of methyl orange (MO). The results showed that photocatalytic properties of HAp/TiO2 composites are more effective than that of individual HAp and TiO2 which implied that the HAp improved the photocatalytic activity of well known photocatalyst TiO2.  相似文献   

14.
The surface of multi-walled carbon nanotubes (MWCNTs) was modified to introduce acidic groups in either covalent or van der Waals interaction bonding environments to establish cross-linking sites with a host polymer. Nanocomposites based on a polyurethane matrix (PU) containing chemically functionalised multi-walled carbon nanotubes (MWCNTs) have been shown to alter its mechanical performance depending on the nature of the surface functional groups on MWCNTs, which correlates to the type of bonding interaction of the surface group and also the dispersibility of MWCNTs and their influence on the domain structure of polyurethane. The stress at break for nanocomposites containing 0.25 wt% of acid-oxidised MWCNTs (MWCNT-ox), bearing covalently attached carboxylic, lactone and phenolic groups, was twice that of the native PU and Young’s Modulus for the nanocomposites increased by four times. Whereas when hemin, which contains carboxylic functionality, was immobilised to the surface of pure MWCNTs, the improvement in Young’s Modulus was only around twice that of pure PU. Differences in the disaggregation of MWCNTs into PU were observed between the samples as well as variation of the native domain structure of PU. The results also infer that the purification of MWCNTs from acid-oxidative lattice fragments (fulvic acids) is vital prior to conducting surface chemistry and polymerisation in order to ensure maximum mechanical performance enhancement in their reinforcement of the host polymer.  相似文献   

15.
Polymer Layered Silicate Nanocomposites based on a commercial grade resol were produced using a simple, low labor cost, mechanical approach which allowed to avoid the process of intercalative polymerization of phenol and formaldehyde. Commercial compatibilized montmorillonite was selected as the main nanoreinforcement, while the matrix was a resol diluted in methanol. The aim of this work was to optimize the production technique of the above mentioned nanocomposites. Therefore intercalation of the resin was promoted by high speed mixing, and the processing parameters were varied in order to find the optimum dispersion. The produced nanocomposites were characterized and compared by means of X-ray diffraction, SEM and thermogravimetric analysis. The results of the characterization tests indicated that it was possible to obtain a good degree of dispersion as well as and uniform distribution of the nanoclay platelets. However, TGA measurements showed that the introduction of well dispersed nanoclays did not result in a consistent improvement of thermal stability respect that of the neat resol.  相似文献   

16.
17.
An interesting correlation between nature of wrapping, wrapping thickness and crystallinity of regioregular poly(3-hexyl thiophene) (rrP3HT) wrapped multi-walled nanotube (MWNT) arises due to different loading of rrP3HT and their combined effect on the properties of a ternary system prepared by uniform dispersion of wrapped CNT into thermoplastic polyurethane (TPU) are highlighted in the article. Data accumulated through different techniques demonstrate that 2.5 wt.% of rrP3HT with 0.5 wt.% of MWNT can be the ideal ratio of filler to achieve highest properties in these stable self-sustained homogeneous composites. Wrapping of rrP3HT on the wall of CNT through π-π and/or CH-π interaction is ascertained from shifting in peak position and Iasym/Isym ratio of CC bond of rrP3HT in FTIR spectroscopy. Strong quenching of fluorescence intensity of rrP3HT in composite further support π-π interaction between rrP3HT and CNTs. SEM micrograph of rrP3HT/TPU blends suggest uniform globular dispersion of polythiophene into TPU matrix without any separate phase domain and addition of CNTs considerably reduce globule size. Single Tg(∼−40 °C, DMA, DSC, TMA) clearly ascertain the miscibility of composite. An ‘order to order transition’ through coil to rod transformation leads to strong, sharp red shifting (∼150 nm shift compared to pristine rrP3HT) in emission peaks of rr-poly (3-hexylthiophene) in blends. Further red shifting and highest quenching is observed in case of 2.5% rrP3HT loaded ternary system whereas blue shifting and quenching in case of 0.5 wt.% (non-uniform wrapping) and 5 wt.% (agglomerates) rrP3HT loading.  相似文献   

18.
Ball milling of carbon nanotubes (CNTs) in the dry state is a common way to produce tailored CNT materials for composite applications, especially to adjust nanotube lengths. For NanocylTM NC7000 nanotube material before and after milling for 5 and 10 h the length distributions were quantified using TEM analysis, showing decreases of the mean length to 54% and 35%, respectively. With increasing ball milling time in addition a decrease of agglomerate size and an increase of packing density took place resulting in a worse dispersability in aqueous surfactant solutions. In melt mixed CNT/polycarbonate composites produced using masterbatch dilution step, the electrical properties, the nanotube length distribution after processing, and the nano- and macrodispersion of the nanotubes were studied. The slight increase in the electrical percolation threshold in the melt mixed composites with ball milling time of CNTs can be assigned to lower nanotube lengths as well as the worse dispersability of the ball milled nanotubes. After melt compounding, the mean CNT lengths were shortened to 31%, 50%, and 66% of the initial lengths of NC7000, NC7000-5 h, and NC7000-10 h, respectively.  相似文献   

19.
Biobased nanocomposites based on cellulose nanowhiskers (CNWs) and cellulose acetate butyrate (CAB) were prepared using solvent exchange of CNWs to ethanol by sol-gel method followed by casting. The strong flow birefringence of the solutions indicated evenly dispersed cellulose nanowhiskers in the dissolved polymer CAB. Scanning electron microscopy of the nanocomposites confirmed well dispersed CNWs in the CAB matrix, which was further supported by the high transparency exhibited by the nanocomposites. The results of tensile tests indicated significant improvements in the mechanical properties of nanocomposites by increasing the CNWs contents. The Young’s modulus and strength increased 83% and 70%, respectively, for nanocomposites with 12 wt% of CNW, and the strain was not suppressed compared to the neat CAB. The dynamic mechanical thermal analysis demonstrated significant improvement in storage modulus with increasing CNW contents, and the tan δ peak position was moved towards higher temperature when CNW was added. It is expected that solvent exchange by the sol-gel route followed by casting of nanocomposites from the same solvent will provide a promising route for obtaining cellulose nanocomposites with well dispersed CNW, leading to improved mechanical properties, even with low nanowhisker contents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号