首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stacked geosynthetic tubes resting on a deformable foundation such as soil are analyzed. The tubes contain a slurry which applies hydrostatic pressure. The material of the tubes is assumed to act like an inextensible membrane and to have negligible weight, and the foundation is assumed to exert a normal upward pressure which is proportional to the downward deflection. Friction is neglected between tubes and at the foundation interface. Two configurations are considered: (a) one tube on top of another and (b) one tube straddling two tubes underneath it. For the latter formation, the case of external fluid acting on one side is analyzed, to simulate an application as a dike, and rigid blocks are utilized to prevent sliding of the tubes. Equilibrium shapes of the tubes are obtained numerically from a closed-form integral formulation, and the tension in each tube is computed.  相似文献   

2.
When permeable geosynthetic tubes are used for dewatering of waste sludge or construction of dikes or embankments, the tubes have to be inflated using sludge or soil slurry several times. After each inflation, the soil slurry is consolidated into solid. Hence from the second inflation onwards, the geosynthetic tube is filled by both slurry and consolidated soil. In this paper, a new analytical method is proposed to provide a solution to the above specific case. Friction between geosynthetic sheet and soil, and friction between geosynthetic tube and subgrade, are considered. Parametric studies are also carried out to compare the design between geosynthetic tubes inflated using pure slurry and that using slurry and consolidated soil to study the key factors affecting the design. The study shows that tensile forces vary along the cross-section of the geosynthetic tube with the minimum value occurring at the center of the base. The effect of friction and lateral earth pressure on the geometry and tensile forces of the geosynthetic tube is insignificant when the height of the consolidated soil in the tube is small, but increases considerably with an increase in the height.  相似文献   

3.
A two dimensional model of a geosynthetic tube sitting on a rigid horizontal foundation and filled with several separated liquids with different densities is proposed. The material from which the tube is made is a special synthetic fabric which is inextensible, perfectly flexible, and leakproof. Such a model is useful for modeling a consolidations process in the tube filled with a slurry. The equilibrium equations of the model are formulated. Unknown values like the pressure on the top and bottom of the tube, the tension in the geosynthetic fabric, the length of the contact zone between the tube and the rigid foundation are searched with respect to the given perimeter, the volumes and densities of liquids. Such a problem is solved by the Newton’s method. The initial approximation is obtained by solving a simplified problem with one liquid with the average density. The problem is implemented in a MATLAB code for geosynthetic tubes filled with two, three, and four liquids with different densities. The tubes filled with two different liquids are studied in more detail. The graphs of the relations are compared with the graphs for the tube filled with the single liquid whose density is the average of the densities of the liquids. The comparison enables to discuss the influence of the consolidation process on the height, the contact zone, the pressures and the tension of the tube. The results of the proposed model for a tube filled with a single liquid are compared with another model.  相似文献   

4.
In the past, the beneficial effects of prestressing the geosynthetic in reinforced soil foundations have been studied mathematically. It is timely to experimentally investigate the degree of improvement generated by prestressing the geosynthetic layer for several embedment depths of a footing resting on a reinforced sand bed. Therefore, laboratory physical model tests and finite element analyses were conducted to study the behaviour of prestressed geotextile-reinforced sand bed supporting a loaded circular footing. The addition of prestress to the geotextile reinforcement results in significant improvement to the settlement response and the load-bearing capacity of the foundation. For a surface footing, the load-carrying capacity at 5 mm settlement for the prestressed case (with prestress equal to 2% of the allowable tensile strength of the geotextile) is approximately double that of the geotextile-reinforced sand without prestress. The beneficial effects of the prestressed geotextile configuration were evident for greater footing depths, in comparison with unreinforced and reinforced (without prestress) counterparts. Experimental and numerical results were also used to validate a few empirical relationships, which are commonly used for solving soil-structure interaction problems. The results obtained from finite element analysis using the program, PLAXIS are generally found to be in reasonabaly good agreement with experimental results.  相似文献   

5.
A series of twenty-eight centrifuge tests was performed on piled embankments with basal geosynthetic reinforcement to assess the influence of pile spacing, embankment height, pile cap size and geosynthetic stiffness on the load transfer mechanism and surface settlements. The measurements of the forces on the piles made it possible to assess the load transfer mechanisms, and 100% efficiency was achieved for all tests performed. The results showed that for the thicker mattress and/or closer piles, the surface settlements were smaller or negligible. Geosynthetic maximum deflections were also examined experimentally and analytically, the latter based on BS8006 (2010) and its further corrigendum in 2012. Close agreement in the predictions of the maximum reinforcement deflection was reached with BS8006 (2012) by adopting a slight modification in the ratio of diagonal and orthogonal maximum deflection (yd/y = √2).  相似文献   

6.
This research was performed to investigate the behavior of geosynthetic-reinforced sandy soil foundations and to study the effect of different parameters contributing to their performance using laboratory model tests. The parameters investigated in this study included top layer spacing, number of reinforcement layers, vertical spacing between layers, tensile modulus and type of geosynthetic reinforcement, embedment depth, and shape of footing. The effect of geosynthetic reinforcement on the vertical stress distribution in the sand and the strain distribution along the reinforcement were also investigated. The test results demonstrated the potential benefit of using geosynthetic-reinforced sand foundations. The test results also showed that the reinforcement configuration/layout has a very significant effect on the behavior of reinforced sand foundation. With two or more layers of reinforcement, the settlement can be reduced by 20% at all footing pressure levels. Sand reinforced by the composite of geogrid and geotextile performed better than those reinforced by geogrid or geotextile alone. The inclusion of reinforcement can redistribute the applied footing load to a more uniform pattern, hence reducing the stress concentration, which will result reduced settlement. Finally, the results of model tests were compared with the analytical solution developed by the authors in previous studies; and the analytical solution gave a good predication of the experimental results of footing on geosynthetic reinforced sand.  相似文献   

7.
A new experimental approach to assess the impact of soil confinement on the long-term behavior of geosynthetics is presented in this paper.The experimental technique described herein includes a novel laboratory apparatus and the use of different types of tests that allow generation of experimental data suitable for evaluation of the time-dependent behavior of geosynthetics under soil confinement.The soil-geosynthetic interaction equipment involves a rigid box capable of accommodating a cubic soil mass under plane strain conditions.A geosynthetic specimen placed horizontally at the mid-height of the soil mass is subjected to sustained vertical pressures that,in turn,induce reinforcement axial loads applied from the soil to the geosynthetic.Unlike previously reported studies on geosynthetic behavior under soil confinement,the equipment was found to be particularly versatile.With minor setup modifications,not only interaction tests but also in-isolation geosynthetic stress relaxation tests and soil-only tests under a constant strain rate can be conducted using the same device.Also,the time histories of the reinforcement loads and corresponding strains are generated throughout the test.Results from typical tests conducted using sand and a polypropylene woven geotextile are presented to illustrate the proposed experimental approach.The testing procedure was found to provide adequate measurements during tests,including good repeatability of test results.The soilegeosynthetic interaction tests were found to lead to increasing geotextile strains with time and decreasing reinforcement tension with time.The test results highlighted the importance of measuring not only the time history of displacements but also that of reinforcement loads during testing.The approach of using different types of tests to analyze the soilegeosynthetic interaction behavior is an innovation that provides relevant insight into the impact of soil confinement on the time-dependent deformations of geosynthetics.  相似文献   

8.
This paper presents an experimental study of the load bearing behavior of geosynthetic reinforced soil (GRS) bridge abutments constructed on yielding clay foundation. The effects of two different ground improvement methods for the yielding clay foundation, including reinforced soil foundation and stone column foundation, were evaluated. The clay foundation was prepared using kaolin and consolidated to reach desired shear strength. The 1/5-scale GRS abutment models with a height of 0.8 m were constructed using sand backfill, geogrid reinforcement, and modular block facing. For the GRS abutments on three different yielding foundations, the reinforced soil zone had relatively uniform settlement and behaved like a composite due to the higher stiffness than the foundation layers. The wall facing moved outward with significant movements near the bottom of facing, and the foundation soil in front of facing showed obvious uplifting movements. The vertical stresses transferred from the footing load within the GRS abutment and on the foundation soil are higher for stiffer foundation. The improvement of foundation soil using geosynthetic reinforced soil and stone columns could reduce the deformations of GRS abutments on yielding foundation. Results from this study provide insights on the practical applications of GRS abutments on yielding foundation.  相似文献   

9.
In the recent past, the wraparound geosynthetic reinforcement technique has been recommended for constructing the geosynthetic-reinforced soil foundations. This paper presents the development of an analytical expression for estimating the ultimate bearing capacity of strip footing resting on soil bed reinforced with geosynthetic reinforcement having the wraparound ends. The wraparound ends of the geosynthetic reinforcement are considered to provide the shearing resistance at the soil-geosynthetic interface as well as the passive resistance due to confinement of soil by the geosynthetic reinforcement. The values of ultimate load-bearing capacity determined by using the developed analytical expression agree well with the model footing load test values as reported in the literature.  相似文献   

10.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   

11.
Analytical solutions for dynamic responses of seabed–geotextile systems subjected to cyclic wave loadings are presented in this paper, which contains the solutions of the transient and harmonic responses. The theory is based on the Biot consolidation equations in which the pore fluid as well as the soil skeleton is considered compressible and the flow in the porous seabed is assumed governed by Darcy's law. The present analysis is completely based on the state-space formulations, which is very effective for laminated systems analysis. Together with Laplace–Fourier transform techniques, state-space methods are used to solve the governing equations. Responses of seabed–geotextile systems can be calculated by using the matrix theory, boundary conditions and inverting integral transform. As illustrative examples, laboratory experiments, which conducted at the Oregon State University Wave Research Facility in USA by McDougal [1981. Ocean wave–soil–geotextile interaction. Ph.D. Dissertation, Oregon State University], are analysed. It is shown that the numerical results are in good agreement with those obtained from laboratory experiments, and the distinction between the transient and harmonic response should be taken into account for design of marine geosynthetic systems. Under the transient condition, the seabed is apt to liquefy. Seabed stability may be increased by placing geotextile beneath an armour layer. The numerical evaluations of the solution in the seabed–geotextile systems can be easily achieved with high efficiency and accuracy.  相似文献   

12.
The physical response of a 1.5-mm-thick, high-density polyethylene geomembrane (GM) is reported when placed on top of a needle-punched geosynthetic clay liner (GCL), buried beneath 50-mm coarse gravel and subjected to vertical pressure in laboratory experiments. Local strains in the geomembrane caused by indentations from the overlying gravel and deflections of a wrinkle in the geomembrane are quantified. A peak strain of 20% was calculated when a flat geomembrane was tested without a protection layer at an applied vertical pressure of 250 kPa. Strains were smaller with a nonwoven needle-punched geotextile protection layer between the gravel and geomembrane. Increasing the mass per unit area of the geotextile up to 2200 g/m2 reduced the geomembrane strain. However, none of the geotextiles tested were sufficient to reduce the geomembrane strain below an allowable limit of 3%, for the particular 50-mm gravel tested and when subjected to a vertical pressure of 250 kPa. Increasing the initial GCL water content and reducing the stiffness of the foundation layer beneath the GCL were found to increase the geomembrane strains. These local strains were greater when a wrinkle was present in the geomembrane. The wrinkle in the geomembrane experienced a decrease in height and width. The wrinkle deformations lead to larger pressures beside the wrinkle and hence producing larger local strains. A 150-mm-thick sand protection layer was effective in limiting the peak strain to less than 0.3% even with a wrinkle in the geomembrane, at a vertical pressure of 250 kPa.  相似文献   

13.
Soil arching often occurs in geosynthetic-reinforced structures, where the underlying soil has voids, resulting in load transmission from the subsided area to surrounding less deformed area. A new method is proposed to predict load acting on gensynthetic overlying voids. The shape of soil arch and stress states of all the points at the soil arch can be obtained by combining nonlinear M-C yielding criterion, non-associated flow rule with static equilibrium of segmental arch through a dilatancy coefficient. The load applied to the geosynthetic can be determined by load transmission from the overlying soil, to the soil arch, and onto the collapsed soil. The model is verified using a model test conducted by Zhu et al. (2012), the soil pressure acting on the deflected geosynthetic is reasonably predicted. Due to the inherent nonlinear behaviour of soil, nonlinear failure criterion can better describe the stresses and deformations of the soil and geosynthetic. Soil nonlinearity has significant influence on the evaluation of arching effect. Ignoring the nonlinear behaviour of soil tends to underestimate the soil pressure acting on the geosynthetic. There exists an optimal subsidence width for which the soil pressure acting on the geosynthetic is minimal. The method used in this study is more appropriate where a large deflection occurs in the geosynthetic and provides a novel approach to evaluating soil arching under these conditions.  相似文献   

14.
Geosynthetic reinforced soil (GRS) structures have gained popularity in replacing concrete rigid piles as abutments to support medium or small-spanned bridge superstructures in recent years. This study conducted 13 model tests to investigate the ultimate bearing capacity of the GRS mass when sand was used as backfill soil. The GRS mass was constructed and loaded to failure under a plane strain condition. Test results were compared with two analytical solutions available in literature. This study also proposed an analytical model for predicting the ultimate bearing capacity of the GRS mass based on the Mohr-Coulomb failure criterion. The failure surface of the GRS mass was described by the Rankine failure surface. The effects of compaction and reinforcement tension were equivalent to increased confining pressures to account for the reinforcing effects of the geosynthetic reinforcement. The proposed model was verified by the results of the model tests conducted in this study and reported in literature. Results indicated that the proposed model was more capable of predicting the ultimate bearing capacity of the GRS mass than the other two analytical solutions available in literature. The proposed model can be used to predict the ultimate bearing capacity of GRS structures when sand was used as backfill material. In addition, a parametric study was conducted to investigate the effects of friction angle of backfill soil, reinforcement spacing, reinforcement strength, and reinforcement stiffness on the ultimate bearing capacity of the GRS mass calculated with and without compaction effects. Results showed that the ultimate bearing capacity of the GRS mass was significantly affected by the friction angle of backfill soil, reinforcement spacing and strength. Compaction effects resulted in an increase in the ultimate bearing capacity of the GRS mass.  相似文献   

15.
This study investigates how the shear rate can affect the geomembrane – protective geotextile friction angle. Four types of geomembranes (GMB) were considered (EPDM, HPDE, PP, and PVC) and a single nonwoven needle-punched geotextile (GTXnw) was used to make the interfaces with the geomembrane. Three shear devices were used: a large-scale inclined plane (IP), a shear box (SB), and a small-scale shear device (ssSD). The ssSD allows two shear modes to be compared: one mode involves incrementally increasing the shear stress, and the other involves imposing a constant tangential velocity at the interface. Only the PP GMB- GTXnw was tested with the SB and the ssSD. Inclined plane standardised tests show that for the three interfaces that undergoes gradual sliding (EPDM, PP and PVC GMB- GTXnw), it is shown that a step-by-step experimental procedure gives significantly lower interface friction angle than that given by the procedure from the current international standard, which is explained by the increase of interface shear stress with sliding speed. These observations are confirmed by shear box tests. One major practical result is that, following the nature of geosynthetics, the shear rate applied in large-scale shear box tests should be adapted to assess a safety value of a geosynthetic - geosynthetic interface friction angle.  相似文献   

16.
This study investigates the influence of clogging substances on pore characteristics and permeability of geotextile envelopes that were used for 3, 7 and 15 years in irrigated farmlands in Xinjiang region, which is arid and suffers from the soil salinity problem. Results show that the macropores (above 125 μm) of envelopes are evidently clogged, whereas the smaller pores less than 100 μm are still unblocked after operation. The permeability coefficients of geotextile envelopes after serving for 3 and 15 years are smaller than the minimum required permeability coefficients after clogging. The main chemical components of clogging substances in the geotextile envelope are silicon dioxide and calcium carbonate. Calcium carbonate content of the geotextile envelope is consistent with calcium carbonate content of soil. Chemical clogging susceptibility increases with the operation time of the subsurface drainage pipes. The ratio of O90 size of envelope material over d90 of soils (O90/d90) and saturation index (SI) can be used to assess the susceptibility of physical and chemical clogging respectively. This study provides a preliminary reference for estimating the clogging susceptibility of geotextile envelopes in arid areas.  相似文献   

17.
Piled embankments provide an economic solution to the problem of constructing embankments over soft soils. The piles and geosynthetic combination can alleviate the uneven surface settlements that sometimes occur in embankments supported by piles without reinforcement. The main focus of this paper is to present a new method for analysis of an embankment of granular fill on soft ground supported by a rectangular grid of piles and geosynthetic. This method is based on consideration of the arching effect in granular soil and similar to the method proposed by Low, B.K., Tang, S.K., Choa, V. [1994. Arching in piled embankments. Journal of Geotechnical Engineering 120 (11), 1917–1938]. The main refinements are: inclusion of a uniform surcharge load on the embankment fill, individual square caps were used, and taking into account the skin friction mechanism, which contributes to soil–geosynthetic interface resistance. Using this method, the influence of embankment height, soft ground depth, soft ground elastic modulus, and geosynthetic tensile stiffness on efficiency, stress concentration ratio, settlement ratio, tension of geosynthetic, and axial strain of geosynthetic are investigated. The results show that inclusion of a geosynthetic membrane can increase the fill load carried by piles. As a result, both the total and differential settlements of the embankment can be reduced. The new design method was verified against several current design methods. Theoretical solution showed that BS8006 [1995. Code of Practice for Strengthened/Reinforced Soils and other Fills. British Standards Institution, London, p. 162] and Guido, V.A., Kneuppel, J.D., Sweeny, M.A. [1987. Plate loading tests on geogrid-reinforced earth slabs. In: Proceedings of the Geosynthetics '87, New Orleans, USA, IFAI, pp. 216–225] methods overpredict the vertical stress acting on the geosynthetic due to that the reaction of the soft ground on the geosynthetic is not considered in their methods. It also showed that the present method is in good agreement with Low, B.K., Tang, S.K., Choa, V. [1994. Arching in piled embankments. Journal of Geotechnical Engineering 120 (11), 1917–1938] method.  相似文献   

18.
This study develops a coupled model of chemical clogging and permeability coefficient of geotextile envelope. Based on the distribution characteristics of crystal precipitates on geotextile envelope and their influence on the permeability coefficient, a permeability coefficient model of an actual geotextile envelope that considers the overlapping effect is developed. Then, the densification effects of geosynthetic fiber hypothesis and the filter cake effect hypothesis are proposed to simulate the processes of increasing fiber diameter after crystal precipitation and the accumulation of crystal precipitates on the surface of geotextile envelope. The crystal precipitation module and permeability coefficient module are coupled, and their experimental values are used to confirm the availability of the model. Results indicate the satisfactory performance of the model. In addition, the parameter sensitivity analysis and trend prediction show that the saturation index SI and solution flow rate V are the main factors that affect the chemical clogging and permeability of geotextile envelope. When the solution conditions are not considered, the sensitivity of geotextile envelope parameter df increased with the amount of precipitation in crystal precipitation. When the pores of the geotextile envelope are completely clogged, the permeability coefficient of the geotextile envelope will drop sharply, then decline slowly.  相似文献   

19.
Construction over soft soil is a challenge as the ground can be too soft to work on it. To overcome this, a working platform has to be formed before any soil improvement work can be carried out. One of such methods was proposed by Broms (1987) which uses geotextile and sand berms. In this paper, a modified Broms' method is proposed to use geotextile tubes to confine the sand berms. A new analytical solution is also proposed to calculate the tensile strain and the profile of geotextile under the sand berms/tubes. Design charts for different design conditions are also developed. Parametric studies were conducted to identify the key parameters affecting the design. Finite element analyses (FEA) and a field trial were also carried out to verify the modified Broms' method and the proposed solution. The monitoring data agree reasonably well with the results obtained from proposed solution and FEA. A design procedure for modified Broms' method and Broms’ method is proposed using the analytical solution.  相似文献   

20.
The objective of this study was to evaluate shear behavior and failure mechanisms of composite systems comprised of a geosynthetic clay liner (GCL) and textured geomembrane (GMX). Internal and interface direct shear tests were performed at normal stresses ranging from 100 kPa to 2000 kPa on eight different GCL/GMX composite systems. These composite systems were selected to assess the effects of (i) GCL peel strength, (ii) geotextile type, (iii) geotextile mass per area, and (iv) GMX spike density. Three failure modes were observed for the composite systems: complete interface failure, partial interface/internal failure, and complete internal failure. Increasing normal stress transitioned the failure mode from complete interface to partial interface/internal to complete internal failure. The peak critical shear strength of GCL/GMX composite systems increased with an increase in GMX spike density. However, the effect of geotextile type and mass per area more profoundly influenced peak critical shear strength at normal stress > 500 kPa, whereby an increase in geotextile mass per area enhanced interlocking between a non-woven geotextile and GMX. Peel strength of a GCL only influenced the GCL/GMX critical shear strength when the failure mode was complete internal failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号